• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 1
  • Tagged with
  • 21
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxygen and cancer: friends or enemies

Lambin, Philippe, January 2001 (has links)
Inaugurele rede Universiteit Maastricht. / Met lit.opg.
2

L’érythropoïétine cérébrale: une nouvelle molécule contre la dépression hypoxique chez le nouveau-né et l’adulte

Ballot, Orlane 24 April 2018 (has links)
Durant l’hypoxie, l’érythropoïétine (Epo) agit sur le système nerveux central (SNC) pour réduire la dépression respiratoire. Mais nous ignorons si la présence de l’Epo endogène dans le SNC agit comme un stimulant respiratoire sexe-spécifique chez le nouveau-né et l’adulte, en hypoxie et en hypercapnie. Des souris âgées de 9 jours et de 3 mois reçoivent une injection intracisternale de l’antagoniste de l’Epo (sEpoR) ou d’un contrôle. 24h après, nous enregistrons les paramètres métaboliques et ventilatoires par pléthysmographie avec une période en normoxie, hypercapnie et différents cycles d’hypoxie. D’après nos résultats, sEpoR produit une dépression respiratoire en normoxie et en hypoxie, en raison d’une diminution de la fréquence respiratoire chez la femelle et du volume courant chez le mâle adulte et nouveau-né. De plus, une différence sexe-spécifique est remarquée en hypoxie seulement chez l’adulte. Cependant, ces résultats ne sont pas retrouvés en hypercapnie. L’Epo endogène est donc un important stimulant respiratoire en hypoxie. / The erythropoietin (Epo) acts on the central nervous system (CNS) to reduce respiratory depression. However, we do not know whether the presence of endogenous Epo in the CNS acts as a respiratory stimulant sex-specific in newbons and adults, in hypoxia and in hypercapnia. Old mice 9 days and 3 months receive intracisternal injection of the antagonist Epo (sEpoR) or a control. 24 hours after we record the metabolic and ventilatory parameters by plethysmography with a period in normoxie, different cycles of hypoxia and in hypercapnia. According to our results, sEpoR produce a respiratory depression in normoxie and in hypoxia, due to a decrease in the respiratory frequency in the female and tidal volume in the male all both ages. In normoxia, sex-specific difference is noticed in two ages, but in hypoxia, only adults. However, this effect is not present in hypercapnia. Endogenous Epo is an important respiratory stimulant in hypoxia.
3

Proposition d'une consultation de médecine générale avant un départ en trek à propos d'une revue de littérature /

Fleury, Claire Goronflot, Lionel. January 2008 (has links)
Reproduction de : Thèse d'exercice : Médecine. Médecine générale : Nantes : 2008. / Bibliogr.
4

Normoxic and anoxic metabolism of Nicotiana tabacum transformants lacking root nitrate reductase

Stoimenova, Maria January 2002 (has links) (PDF)
The aim of this work was to find out whether and how nitrate reduction in roots would facilitate survival of hypoxic and anoxic (flooding)-phases. For that purpose, we compared the response of roots of hydroponically grown tobacco wildtype (Nicotiana tabacum cv. Gatersleben) and of a transformant (LNR-H) with no nitrate reductase (NR) in the roots but almost normal NR in leaves (based on a nia2-double mutant). As an additional control we used occasionally a 35S-transformant of the same nia2-double mutant, which on the same genetic background constitutively expressed NR in all organs. In some cases, we also compared the response of roots from WT plants, which had been grown on tungstate for some time in order to completely suppress NR activity. The following root parameters were examined: 1) Growth and morphology 2) Root respiration rates and leaf transpiration 3) Metabolite contents in roots (ATP, hexosemonophosphates, free sugars, starch, amino acids, total protein) 4) Inorganic cation and anion contents 5) Lactate and ethanol production 6) Extractable LDH-and ADH-activities 7) Cytosolic pH values (by 31P-NMR) 8) NO Cation and anion contents of roots from WT and LNR-H were only slightly different, confirming that these plants would be better suited for our purposes than the widely used comparison of nitrate-versus ammonium-grown plants, which usually show up with dramatic differences in their ion contents. Normoxia: LNR-H-plants had shorter and thicker roots than WT with a lower roots surface area per leaf FW. This was probably the major cause for the significantly lower specific leaf transpiration of LNR-H. WT-roots had lower respiration rates, lower ATP-and HMP-contents, slightly lower sugar- and starch contents and somewhat lower amino acid contents than LNR-H roots. However, total protein/FW was almost identical. Obviously the LNR-H transformants did not suffer from N-defciency, and their energy status appeared even better than that of WT-roots. Data from the 35S-transformant were similar to those of WT. This indicates that the observed differences between WT and LNR-H were not due to unknown factors of the genetic nia2-background, but that they could be really traced back to the presence resp. absence of nitrate reduction. Anoxia: Under short-term anoxia (2h) LNR-H plants, but not WT-plants exhibited clear symptoms of wilting, although leaf transpiration was lower with LNR-H. Reasons are not known yet. LNR-H roots produced much more ethanol (which was excreted) and lactate compared to WT, but extractable ADH and LDH activities, were not induced by anoxia. However, the LDH activity background was twice as high as that of the WT troughout the time period studied. Tungstate-treated WT-roots also gave higher fermentation rates than normal WT roots. Sugar- and HMP-contents remained higher in LNR-H roots than in WT. NR in WT roots was activated under anoxia and roots accumulated nitrite, which was also released to the medium. 31P-NMR spectroscopy showed that LNR-H- roots, in spite of their better energy status, acidified their cytosol more than WT roots. Conclusions: Obviously nitrate reduction affects - by as yet unknown mechanisms - root growth and morphology. The much lower anoxic fermentation rates of WT-roots compared to LNR-H roots could not be traced back to an alternative NADH consumption by nitrate reduction, since NR activity was too low for that. An overall estimation of H+-production by glycolysis, fermentation and nitrate reduction (without nitrite reduction, which was absent under anoxia) indicated that the stronger cytosolic acidification of anoxic LNR-H roots was based on their higher fermentation rates. Thus, nitrate reduction under anoxia appears advantageous because of lower fermentation rates and concomitantly lower cytosolic acidification. However, it remained unclear why fermentation rates were so different. Perspective: Preliminary experiments had indicated that WT-roots produced more nitric oxide (NO) under anoxia than LNR-H-roots. Accordingly, we suggest that nitrate reduction, beyond a merely increased NADH-consumption, would lead to advantageous changes in metabolism, eventually via NO-production, which is increasingly recognized as an important signaling compound regulating many plant functions. / Ziel der Arbeit war es herauszufinden, ob und wie Nitratreduktion in der Wurzel das Überleben von hypoxischen und anoxischen (Überflutungs)-Phasen erleichtert. Hierzu wurden Wurzeln eines hydroponisch angezogenen Tabak-Wildtyps (Nicotiana tabacum cv. Gatersleben), sowie einer Tabaktransformante auf der Basis der nia Doppelmutante, welche Nitratreduktase nur noch in den Blättern exprimierte (LNR-H), im Hinblick auf verschiedene Parameter verglichen. Als zusätzliche Kontrolle wurde eine 35S-Transformante der nia-Doppelmutante gelegentlich in die Vergleiche mit einbezogen, da diese auf dem genetischen Hintergrund der nia Doppelmutante NR in Blättern und Wurzeln konstitutiv exprimierte mit Aktivitäten, die in etwa denen des Wildtyps entsprachen. In einigen Fällen wurde die Nitratreduktase des WT durch Aufzucht auf Wolframat (an Stelle von Molybdat) gehemmt, und diese Pflanzen wurden ebenfalls mit normalen WT-Wurzeln verglichen. Folgende Parameter wurden untersucht: 1) Wachstum und Wurzelmorphologie 2) Atmungsraten, Transpirationsraten 3) Metabolitgehalte (ATP, Hexosemonophosphate, freie Zucker, Aminosäuren) 4) Gehalte anorganischer Kationen und Anionen 5) Lactat- und Ethanolproduktion 6) LDH und ADH-Aktivitäten in Wurzelextrakten 7) Cytosolische pH-Werte mittels 31P-NMR 8) NO Die Analyse des Kationen- und Anionengehaltes der Wurzeln bestätigte zunächst, das die LNR-H-Transformante und der WT sich in dieser Hinsicht nur unwesentlich unterschieden und von daher zum weiteren Vergleich besser geeignet waren als die vielfach verwendete Paarung von nitrat-bzw- ammoniumernährten Pflanzen. Normoxia: LNR-H-Pflanzen hatten kürzere und dickere Wurzeln mit einer niedrigeren Wurzeloberfläche pro Blattfrischgewicht als WT. Dies war vermutlich die Hauptursache für die deutlich niedrigeren Transpirationsraten von LNR-H. WT-Wurzeln hatten unter normoxischen Bedingungen niedrigere Atmungsraten, niedrigere ATP und HMP-Gehalte, etwas niedrigere Zucker und Stärkegehalte und etwas niedrigere Gesamt-Aminosäuregehalte als LNR-H-Wurzeln. Andererseits waren die Gesamt-Proteingehalte (pro FG) praktisch identisch. Offensichtlich litt die LNR-H-Transformante nicht unter N-Mangel, und ihr energetischer Zustand war unter Normalbedingungen eher besser war als der des WT. Die Daten der 35S-Transformante entsprachen weitgehend denen des WT. Dies zeigt, dass die beobachteten Unterschiede nicht auf unbekannten Faktoren des nia2-Hintergrunds beruhten, sondern definitiv auf dem Vorhandensein (bzw. der Abwesenheit) von Nitratreduktion. Anoxia: Unter Anoxia (4h) traten bei LNR-H deutliches Welken der Blätter auf, bei WT dagegen nicht. Die Ursachen sind unklar. Unter Anoxia produzierten LNR-H-Wurzeln sehr viel mehr Ethanol und Lactat als WT, obwohl weder ADH-noch LDH Aktivitäten in Wurzelextrakten unter Anoxia erhöht wurden. Allerdings besaß die LNR-H Transformante permanent doppelt so hohe LDH Aktivitäten wie der WT.h. Auch Wolframat-versorgte WT-Wurzeln produzierten unter Anoxia mehr Lactat und Ethanol als der normale WT. Zucker und HMP-Gehalte blieben in LNR-H höher als in WT. Die NR von WT-Wurzeln wurde unter Anoxia aktiviert und die Wurzeln akkumulierten Nitrit, das großteils an die Nährlösung abgegeben wurde. 31P-NMR-Messungen zeigten, dass LNR-H-Wurzeln trotz ihres besseren Energiezustandes unter Anoxia das Cytosol stärker ansäuerten als WT-Wurzeln. Schlussfolgerungen: Offensichtlich beeinflusst Nitratreduktion auf noch unbekannte Weise Wachstum und Morphologie der Wurzeln unter Normoxia. Die viel niedrigeren Gärungsraten der WT-Wurzeln unter Anoxia konnten nicht auf einen alternativen NADH-Verbrauch der Nitratreduktion zurückgeführt werden, weil dazu die NR-Aktivitäten zu niedrig waren. Bilanzierung der H+-Produktion durch Glycolyse, Gärung und Nitratreduktion zeigte, dass die stärkere cytosolische Ansäuerung der anoxischen LNR-H Wurzeln auf den insgesamt höheren Gärungsraten der LNR-H-Wurzeln beruhen muss. Nitratreduktion ist unter Anoxia also vorteilhaft, weil sehr viel weniger Gärung abläuft und damit cytosolische Ansäuerung abgeschwächt wird. Warum allerdings die Gärungsraten so unterschiedlich waren, blieb unklar. Ausblick: Vorversuche hatten ergeben, dass WT-Wurzeln unter Anoxia mehr Stickstoffmonoxid (NO) produzierten als LNR-H-Wurzeln. Es wird deshalb hypothetisch vorgeschlagen, dass die Nitratreduktion über den bloßen NADH-Verbrauch hinaus durch eine anoxische NO-Produktion ein Signal erzeugt, das vorteilhaft regulierend in Stoffwechsel und Wachstum eingreift.
5

Physiopathologie de l'hypertension pulmonaire de la BPCO

Chaouat, Ari Adnot, Serge. January 2008 (has links) (PDF)
Thèse de doctorat : Physiologie et physiopathologie de l'appareil respiratoire : Paris Est : 2008. / Titre provenant de l'écran-titre.
6

Anaerobic oxidation of methane in marine sediments

Treude, Tina. Unknown Date (has links) (PDF)
University, Diss., 2004--Bremen. / Erscheinungsjahr an der Haupttitelstelle: 2003.
7

Evaluation rétrospective à la Maternité Régionale de Nancy de la prise en charge du travail de patientes ayant accouché par voie basse spontanée d'un nouveau-né présentant un pH au cordon inférieur ou égal à 7,10

Bucher, Marie January 2009 (has links) (PDF)
Mémoire de sage-femme : Médecine : Nancy 1 : 2009. / Titre provenant de l'écran-titre. Bibliogr.
8

Carbon gains, losses, and feedbacks in shallow, eutrophic lakes of phytoplankton and macrophyte dominance

Brothers, Soren January 2013 (has links)
Lakes are increasingly being recognized as an important component of the global carbon cycle, yet anthropogenic activities that alter their community structure may change the way they transport and process carbon. This research focuses on the relationship between carbon cycling and community structure of primary producers in small, shallow lakes, which are the most abundant lake type in the world, and furthermore subject to intense terrestrial-aquatic coupling due to their high perimeter:area ratio. Shifts between macrophyte and phytoplankton dominance are widespread and common in shallow lakes, with potentially large consequences to regional carbon cycling. I thus compared a lake with clear-water conditions and a submerged macrophyte community to a turbid, phytoplankton-dominated lake, describing differences in the availability, processing, and export of organic and inorganic carbon. I furthermore examined the effects of increasing terrestrial carbon inputs on internal carbon cycling processes. Pelagic diel (24-hour) oxygen curves and independent fluorometric approaches of individual primary producers together indicated that the presence of a submerged macrophyte community facilitated higher annual rates of gross primary production than could be supported in a phytoplankton-dominated lake at similar nutrient concentrations. A simple model constructed from the empirical data suggested that this difference between regime types could be common in moderately eutrophic lakes with mean depths under three to four meters, where benthic primary production is a potentially major contributor to the whole-lake primary production. It thus appears likely that a regime shift from macrophyte to phytoplankton dominance in shallow lakes would typically decrease the quantity of autochthonous organic carbon available to lake food webs. Sediment core analyses indicated that a regime shift from macrophyte to phytoplankton dominance was associated with a four-fold increase in carbon burial rates, signalling a major change in lake carbon cycling dynamics. Carbon mass balances suggested that increasing carbon burial rates were not due to an increase in primary production or allochthonous loading, but instead were due to a higher carbon burial efficiency (carbon burial / carbon deposition). This, in turn, was associated with diminished benthic mineralization rates and an increase in calcite precipitation, together resulting in lower surface carbon dioxide emissions. Finally, a period of unusually high precipitation led to rising water levels, resulting in a feedback loop linking increasing concentrations of dissolved organic carbon (DOC) to severely anoxic conditions in the phytoplankton-dominated system. High water levels and DOC concentrations diminished benthic primary production (via shading) and boosted pelagic respiration rates, diminishing the hypolimnetic oxygen supply. The resulting anoxia created redox conditions which led to a major release of nutrients, DOC, and iron from the sediments. This further transformed the lake metabolism, providing a prolonged summertime anoxia below a water depth of 1 m, and leading to the near-complete loss of fish and macroinvertebrates. Pelagic pH levels also decreased significantly, increasing surface carbon dioxide emissions by an order of magnitude compared to previous years. Altogether, this thesis adds an important body of knowledge to our understanding of the significance of the benthic zone to carbon cycling in shallow lakes. The contribution of the benthic zone towards whole-lake primary production was quantified, and was identified as an important but vulnerable site for primary production. Benthic mineralization rates were furthermore found to influence carbon burial and surface emission rates, and benthic primary productivity played an important role in determining hypolimnetic oxygen availability, thus controlling the internal sediment loading of nutrients and carbon. This thesis also uniquely demonstrates that the ecological community structure (i.e. stable regime) of a eutrophic, shallow lake can significantly influence carbon availability and processing. By changing carbon cycling pathways, regime shifts in shallow lakes may significantly alter the role of these ecosystems with respect to the global carbon cycle. / Seen werden zunehmend als wichtige Komponente im globalen Kohlenstoffkreislauf anerkannt. Natürliche Veränderungen und anthropogene Aktivitäten beeinflussen die Struktur der Artengemeinschaft von Seen, was Auswirkungen auf den Transport und Umsatz von Kohlenstoff hat. Diese Arbeit konzentriert sich auf die Beziehung zwischen Kohlenstoffkreislauf und der Gemeinschaftsstruktur der Primärproduzenten in kleinen Flachseen. Diese sind der weltweit häufigste Seentyp und weisen durch ihren im Vergleich zur Fläche großen Umfang eine intensive aquatisch-terrestrische Kopplung auf. In Flachseen treten oft Regimewechsel zwischen Makrophyten- und Phytoplankton-Dominanz auf. Diese können potenziell große Konsequenzen für den regionalen Kohlenstoffkreislauf haben. In dieser Dissertation vergleiche ich einen Klarwassersee mit submersen Makrophyten und einen trüben, Phytoplankton-dominierten See hinsichtlich Verfügbarkeit, Umsatz und Export von organischem und anorganischem Kohlenstoff. Des Weiteren habe ich den Effekt der erhöhten Zufuhr von terrestrischem Kohlenstoff auf den internen Kohlenstoffumsatz untersucht. Sowohl die Tagesgänge der pelagischen Sauerstoff-Konzentrationen als auch Fluoreszenz-basierte Messungen der Primärproduktion bewiesen, dass die Präsenz von submersen Makrophyten eine höhere jährliche Brutto-Primärproduktion im Vergleich zu einem Phytoplankton-dominierten See mit ähnlichen Nährstoffkonzentrationen ermöglicht. Ein einfaches, auf den empirischen Daten basierendes Model zeigt, dass diese Unterschiede in der Brutto-Primärproduktion typisch sind für moderat eutrophe Seen mit einer mittleren Tiefe von unter 3 bis vier Metern. In diesen Seen leistet die benthische Primärproduktion den Hauptbeitrag zur Primärproduktion des ganzen Sees. Daraus wird ersichtlich, dass Regimewechsel von Makrophyten- zur Phytoplankton-Dominanz in Flachseen die Verfügbarkeit von autochthonem organischem Kohlenstoff für das Nahrungsnetz reduzieren. Paläolimnologische Analysen in Sedimentkernen beider Seen wiesen darauf hin, dass der Verlust der Makrophyten mit einer vierfachen Zunahme der Kohlenstoff-Speicherraten einhergeht, und somit zu einer großen Veränderung der Dynamik des Kohlenstoffkreislaufs im See führt. Unsere Kohlenstoff-Massenbilanzen zeigen, dass die Erhöhung der Kohlenstoff-Speicherung im Sediment nicht durch die Erhöhung der Primärproduktion oder durch externe Quellen, sondern durch erhöhte der Effizienz der Speicherung begründet war. Dies geht mit einer reduzierten benthischen Mineralisierungsrate und einer erhöhten Calcitfällung einher und führt zu reduzierten Kohlendioxid-Emissionen. Eine Periode ungewöhnlich hoher Niederschläge mit erhöhten Wasserständen führte im Phytoplankton-dominierten See zu zu einem starken Anstieg der Konzentrationen an gelöstem organischem Kohlenstoff (DOC) und zu anoxischen Bedingungen. Es wurde postuliert, dass zwischen diesen Prozessen eine positive Rückkopplung besteht. Die hohen Wasserstände und DOC-Konzentrationen reduzierten die Lichtversorgung und damit die Primärproduktion im Benthal und erhöhten die pelagischen Respirationsraten. Dadurch verringerte sich die Sauerstoffverfügbarkeit im Hypolimnion. Die dadurch erzeugten Redox-Verhältnisse führten zu einer Freisetzung großer Mengen an Nährstoffen, DOC und Eisen aus dem Sediment. Die während des gesamten Sommers andauernden anoxischen Verhältnisse in Wassertiefen unter 1 m führten zu einem fast vollständigen Verlust von Fischen und Makroinvertebraten. Zusätzlich wurde der pH-Wert im Pelagial signifikant erniedrigt und die Kohlenstoffdioxid-Emissionen im Vergleich zu früheren Jahren verzehnfacht. Insgesamt trägt diese Dissertation wesentliche Aspekte zum besseren Verständnis der Bedeutung des Benthals für den Kohlenstoffkreislauf in Flachseen bei. Der Anteil der benthischen Zone an der Primärproduktion in kleinen Flachseen wurde in Relation zur Gesamtproduktion des Systems quantifiziert. Letztlich zeigt diese Arbeit, dass die Gemeinschaftsstruktur der Primärproduzenten eines eutrophen Flachsees die Verfügbarkeit und den Umsatz von Kohlenstoff signifikant beeinflusst. Regimewechsel in Flachseen können durch Änderungen im internen Kohlenstoffkreislauf deren Rolle im globalen Kohlenstoffkreislauf verändern.
9

Corrélation entre l'expression de HIF tronc cérébral et la réponse ventilatoire à l'hypoxie chez les rats et les souris

Shahare, Manju January 2016 (has links)
Compte tenu de la faible disponibilité de l’oxygène (hypoxie) en haute altitude, l’adaptation à ce milieu constitue un vrai défi pour les espèces adaptées au niveau de la mer. Aussi, le rat et la souris constituent un modèle pertinent pour la compréhension des facteurs qui contribuent à une bonne adaptation en haute altitude. En effet, les rats et les souris de laboratoire élevées à haute altitude durant plusieurs générations possèdent un phénotype différent: les souris présentent une plus importante ventilation, des valeurs d’hématocrite/ hémoglobine diminuées et une hypertension pulmonaire réduite. Ces différences indiquent une mauvaise adaptation des rats qui montrent également une importante mortalité en haute altitude. Néanmoins, les mécanismes impliqués dans cette différence entre ces deux espèces ne sont pas connus. Nous avons donc recherché dans un premier temps si les différences observées entre rats et souris sont également présentent au niveau de la mer, puis dans un second temps si cela avait un lien avec l'expression du senseur moléculaire d'oxygène HIF (Hypoxia Inducible Factor). Nous avons mené une étude au niveau de la mer (Québec, Canada - 98m) pour comparer les réponses ventilatoire et moléculaire entre les rats et les souris. Pour se faire, les animaux sont exposés pendant 6 heures à différents gradients d’oxygène : 21%, 15%, et 12% O2. La ventilation est mesurée par pléthysmographie à corps entier. La consommation d’oxygène (VO2) et la production de CO2 (VCO2) sont évaluées durant la même période d’exposition. Après 6 heures d’exposition, les animaux sont anesthésiés et le tronc cérébral rapidement prélevé pour effectuer une mesure de l’expression de HIF-1α à l’aide de la technique ELISA (Enzyme LinkImmunosorbent Assay). Comparé aux rats, les souris présentent une élévation du débit ventilatoire, une diminution de la VO2 et de la VCO2 et une augmentation de l’équivalant ventilatoire à l’O2 (Ve/VO2) et au CO2 (Ve/VCO2) durant l’exposition à 15 et 12% d’O2. De plus, l’expression de HIF-1α au niveau du tronc cérébral est plus élevée chez les souris en comparaison à celui des rats. En conclusion, la différence de la réponse ventilatoire à l’hypoxie peut être liée à la différence d’expression de HIF-1α au niveau du tronc cérébral. Ces resultantssuggèrent que les souris possèdent une prédisposition génétique permettant une réponse adaptée en milieu hypoxique et pouvant aisément expliquer la facilité que possède cette espèce à survivre et à établir sa colonie en haute altitude. Mot clés : Hypoxie, haute altitude, réponse ventilatoire à l’hypoxie, tronc cérébral, HIF. / Successful adaptation at high altitude is very challenging for sea level natives due to the low level of available oxygen (hypoxia). Rats and mice offer an interesting model to understand the factors that contribute to efficient adaptation to high altitude. Indeed, laboratory rats and mice that have been raised at high altitude for several generations have a different phenotype with mice showing higher ventilation, lower hematocrit/hemoglobin values, and lower pulmonary hypertension. These differences are clearly a failure of adaptation to high altitude in rats, as underlined by data showing high mortality in the colony of high altitude rats. However the underlying mechanisms behind these differences are poorly understood. We sought to address whether these differences are also apparent in mice and rats living at Sea level, and if they are related to different responses of the O2 molecular sensor HIF (Hypoxia Inducible Factor). To test these hypotheses, we chose to perform the study at sea level i.e. at Quebec City, Canada (98m) to compare the ventilatory and molecular responses in male rats and mice. The animals were exposed to different oxygen gradients 21%O2, 15 % O2 and 12% O2 for 6 hours. Ventilation was measured by whole bodyplethysmography, oxygen consumption (VO2) and CO2 production rate (VCO2) were also measured during the exposure. After the 6 hour’s exposure, the animals were anesthetised, and the brainstem quickly dissected, Brainstem HIF-1α expression was measured by Enzyme Link Immunosorbent Assay (ELISA). Compared to rats, mice had higher minute ventilation, lower VO2, VCO2, and higher ventilatory equivalent to oxygen and carbon dioxide, (Ve/VO2, Ve/VCO2) at 15% and 12% O2. In addition, mice also had higher brainstem HIF-1α expression compared to rats. We conclude that the differences in ventilatory responses to hypoxia at sea level might be due to differences in expression of HIF-1α in the brainstem. This suggests that mice have a genetic pre-disposition that ensure adequate response to hypoxia. This trait helps to explain that mice are able to survive and successfully establish natural colonies at high altitude. Key Words: Hypoxia, high altitude, hypoxic ventilatory response, Brainstem, HIF.
10

Effet d'une surexpression d'érythropoïétine cérébrale sur la régulation et la mise en place post-natales du système nerveux de contrôle respiratoire chez la souris

Caravagna, Céline Michelle 23 April 2018 (has links)
L’érythropoïétine (Epo) est une cytokine exprimée dans le système nerveux central (CNS). A l’âge adulte, elle agit comme modulateur respiratoire dans le tronc cérébral en augmentant la réponse ventilatoire à l’hypoxie (RVH) chez l’homme et la souris. Les troubles respiratoires chez les nouveau-nés étant répandus, trouver un traitement adapté est d’un intérêt primordial. J’ai émis l’hypothèse qu’une stimulation chronique à l’Epo du CNS des nouveau-nés aiderait le développement de la commande centrale respiratoire et sa réponse à l’hypoxie. Afin de tester cette hypothèse, j’ai enregistré la respiration de souris transgéniques surexprimant l’Epo spécifiquement dans le CNS (Tg21). La RVH, qui se met normalement en place au cours du développement post-natal, apparaît légèrement plus tôt chez les souris Tg21, mais n’est pas accentuée avant le sevrage, comme elle l’est à l’âge adulte. Nous avons quantifié l’expression d’Epo et de son récepteur (EpoR) dans le tronc cérébral des souris Tg21. L’expression d’EpoR diminue au cours du développement post-natal, mais la surexpression d’Epo augmente. Ceci pourrait expliquer cette apparition tardive de l’augmentation de la RVH. J’ai par la suite étudié les mécanismes impliqués. J’ai montré par enregistrements électrophysiologiques que la dépression du rythme due à l’hypoxie n’est pas présente dans les troncs cérébraux provenant de souris Tg21. In vitro, le tronc cérébral Tg21 est capable de maintenir le rythme respiratoire en hypoxie. De plus, le patron de décharge des troncs cérébraux Tg21 le jour de la naissance ressemble à celui à trois jours de vie, ce qui laisse penser à une maturation accélérée de la commande centrale respiratoire. Cette dernière observation reste cependant à confirmer. Dans ses autres rôles (e.g. érythropoïétique et neuroprotecteur), l’Epo met en jeu différentes voies de signalisation, dont les voies de signalisation MEK-ERK et PI3K-Akt. J’ai émis l’hypothèse que ces voies de signalisation étaient également mises en jeu dans l’effet que l’Epo a sur la commande centrale respiratoire, et grâce à l’utilisation d’inihibiteurs, mis en évidence que l’une ou l’autre de ces voies de signalisation n’est pas suffisante pour expliquer l’effet bénéfique de l’Epo sur le rythme respiratoire, ce qui laisse penser à un mécanisme compensatoire. / Erythropoietin (Epo) is a cytokin expressed in the central nervous system (CNS). At adulthood, Epo acts as a respiratory modulator which enhances hypoxia ventilatory response (HVR) in both human and mouse. Respiratory disorders in newborns are common, as such finding an adapted treatment is of first interest. I hypothesized that chronic Epo stimulation on the CNS of newborns is helpfull to the central respiratory command to develop and respond to hypoxia. To test this hypothesis, I recorded breathing of transgenic mice overexpressing Epo in the CNS only (Tg21). HVR, which normally sets up during post-natal development, appears earlier in Tg21 mice, but is not higher as observed at adulthood in Tg21 mice. We quantified Epo and EpoR expression in Tg21 brainstems. EpoR expression decreases during post-natal development, while Epo overexpression is enhanced. These results could explain the late apparition of HVR enhancement. Then, I studied the underlying mecanisms. By electrophysiological recordings, I showed that usual rhythm depression due to hypoxia is not present in Tg21 brainstems-spinal cord preparations. In vitro, Tg21 brainstem is able to maintain the respiratory rhythm during hypoxia. Moreover, burst pattern from Tg21 mice on the first day of post-natal life looks like the burst pattern at three living days, which suggests an earlier maturation of the central respiratory system. However, this observation needs to be confirmed. In other roles (e.g. erythropoietic and neuroprotector) Epo recruits different pathways, mostly MEK-ERK and PI3K-Akt pathways. I hypothesized that these pathways are also involved in Epo effect on the central respiratory command. Thank to specific inhibitors, I highlighted that one of these pathways is not sufficient to support Epo role on newborn breathing, suggestiong a compensatory mechanism.

Page generated in 0.037 seconds