1 |
Étude expérimentale d'interactions entre antennes HF et plasma périphérique d'un Tokamak / Experimental study of the interaction between RF antennas and the edge plasma of a tokamakKubic, Martin 23 October 2013 (has links)
Les antennes en opération dans la gamme de fréquence cyclotron ionique représentent un moyen utile pour chauffer du plasma dans les tokamaks et autres plasmas de fusion. Ces systèmes de chauffage sont amenés à jouer un rôle important dans le projet ITER. Conjointement avec le chauffage souhaité, les interactions parasites avec le bord du plasma et de la limite des matériaux apparaissent. Plusieurs de ces effets délétères sont causés par la formation de la radio-fréquence des gaines. L'objectif de cette thèse est d'étudier, principalement de façon expérimentale, les modifications du plasma de bord «scrape-off layer» causées par les effets non-linéaires des gaines RF. Cela se fait en utilisant les sondes électrostatiques (de Langmuir, Retarded Field Analyser, tunnel) pour différentes configurations du plasma et des antennes: avec des études paramétriques en fonction du déséquilibre entre les émetteurs de l'antenne, de la puissance injectée et de la densité SOL. De plus, l'influence des gaines RF sur les mesures du potentiel de la gaine avec le RFA sont analysées. Cette étude s'effectue à l'aide d'un code 1D basé sur le modèle cinétique «particle-in-cell». Ces simulations ont montré que la RFA est capable de mesurer de manière fiable le potentiel gaine, toutefois cela reste limité pour les fréquences de plasma ionique wpi proche de la fréquence injectée wrf. Par contre, pour des conditions réelles du SOL (wpi>wrf), quand RFA est magnétiquement connectée à la structure de l'antenne RF, il est fortement sous-estimé. Enfin, les mesures de RFA dans Tore Supra indiquent que les potentiels RF se propagent au moins jusqu'à de 12m de l'antenne le long de lignes de champ magnétiques / Antennas operating in the ion cyclotron range of frequency (ICRF) provide a useful tool for plasma heating in many tokamaks and are foreseen to play an important role in ITER. However, in addition to the desired heating in the core plasma, spurious interactions with the plasma edge and material boundary are known to occur. Many of these deleterious effects are caused by the formation of radio-frequency (RF) sheaths. The aim of this thesis is to study, mainly experimentally, scrape-off layer (SOL) modifications caused by RF sheaths effects by means of Langmuir probes that are magnetically connected to a powered ICRH antenna. Effects of the two types of Faraday screens' operation on RF-induced SOL modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, injected power and SOL density. In addition to experimental work, the influence of RF sheaths on retarding field analyzer (RFA) measurements of sheath potential is investigated with one-dimensional particle-in-cell code. One-dimensional particle-in-cell simulations show that the RFA is able to measure reliably the sheath potential only for ion plasma frequencies wpi similar to RF cyclotron frequency wrf, while for the real SOL conditions (wpi > wrf), when the RFA is magnetically connected to RF region, it is strongly underestimated. An alternative method to investigate RF sheaths effects is proposed by using broadening of the ion distribution function as an evidence of the RF electric fields in the sheath. RFA measurements in Tore Supra indicate that RF potentials do indeed propagate from the antenna 12m along magnetic field lines
|
2 |
Etude des effets de gaine induites par une antenne de chauffage à la fréquence cyclotronique ionique (FCI, 30-80 MHz) et de leur impact sur les mesures par sondes dans les plasmas de fusion / Study of sheath effects induced by an heating Ion Cyclotron Radio Frequency antenna (ICRF, 30-80MHz) and their impact to probe measurements in fusion plasma devicesNgadjeu Djomzoue, Alain narcisse 16 December 2010 (has links)
Ces travaux abordent la problématique des mesures de sonde de Langmuir dans un environnement RF. Les mesures expérimentales ont montré que des courants DC négatifs (électroniques) étaient collectés sur la structure d'une antenne ICRF sous tension, pendant que des courants DC positifs (ioniques) sont recueillis par une sonde de Langmuir à l'autre bout du tube de flux magnétique ouvert connecté à l'antenne, la sonde étant au potentiel de la machine. Un modèle de tube de flux asymétrique, de type de sonde double, est présenté. Celui-ci modélise un plasma, confiné le long des lignes de champ magnétique, ayant à chaque extrémité une électrode dont l'une est polarisée à un potentiel RF et l'autre à la masse. L'électrode polarisée modélise le potentiel RF résultant de l'intégration, le long d'une ligne champ magnétique, du champ électrique rayonné par les straps d'une antenne ICRF, tandis que l'autre électrode modélise la sonde au potentiel de la machine. Ce modèle permet d'expliquer l'apparition de courants DC en émettant simplement l'hypothèse qu'il faut à la fois une asymétrie de la source RF par rapport à une masse fixe, une conductivité RF transverse non nulle autorisant des courants RF transverses ainsi qu'une caractéristique courant-tension non linéaire due aux gaines pour favoriser des courants négatifs du côté RF et des courants positifs côté sonde. Ce modèle permet également de modéliser les caractéristiques Courant DC - Tension DC d'une sonde en présence de RF et ainsi d'évaluer les propriétés du plasma. Dans ce cas l'électrode modélisant la sonde n'est plus à la masse, mais à un potentiel donné. Des résultats analytiques sont trouvés dans certaines limites / This work investigates the problematic of probe measurements in RF environment. DC currents flowing along magnetic field lines connected to powered ICRF antennas have been observed experimentally. Negative (i.e. net electron) current is collected on the powered ICRF antenna structure, while positive (i.e. net ion) current is collected by magnetically connected Langmuir probes. An asymmetric model based upon a double probe configuration was developed. The ICRF near field effect is mimicked by a ?driven? RF electrode at one extremity of an "active" open magnetic flux tube, where a purely sinusoidal potential is imposed. The other connection point is maintained at ground potential to model a collecting probe. This "active" flux tube can exchange transverse RF currents with surrounding "passive" tubes, whose extremities are grounded. With simple assumptions, an analytical solution is obtained. We can thus explain how DC currents are produced from RF sheaths. This model also makes it possible to model the characteristics DC Current' DC Voltage of a probe in the presence of RF and thus to evaluate some plasma properties. In this case the electrode at ground potential (probe) is polarized at a given potential. Analytical results are found within certain limits
|
Page generated in 0.0585 seconds