• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Arabic named entity recognition

Benajiba, Yassine 24 May 2010 (has links)
En esta tesis doctoral se describen las investigaciones realizadas con el objetivo de determinar las mejores tecnicas para construir un Reconocedor de Entidades Nombradas en Arabe. Tal sistema tendria la habilidad de identificar y clasificar las entidades nombradas que se encuentran en un texto arabe de dominio abierto. La tarea de Reconocimiento de Entidades Nombradas (REN) ayuda a otras tareas de Procesamiento del Lenguaje Natural (por ejemplo, la Recuperacion de Informacion, la Busqueda de Respuestas, la Traduccion Automatica, etc.) a lograr mejores resultados gracias al enriquecimiento que a~nade al texto. En la literatura existen diversos trabajos que investigan la tarea de REN para un idioma especifico o desde una perspectiva independiente del lenguaje. Sin embargo, hasta el momento, se han publicado muy pocos trabajos que estudien dicha tarea para el arabe. El arabe tiene una ortografia especial y una morfologia compleja, estos aspectos aportan nuevos desafios para la investigacion en la tarea de REN. Una investigacion completa del REN para elarabe no solo aportaria las tecnicas necesarias para conseguir un alto rendimiento, sino que tambien proporcionara un analisis de los errores y una discusion sobre los resultados que benefician a la comunidad de investigadores del REN. El objetivo principal de esta tesis es satisfacer esa necesidad. Para ello hemos: 1. Elaborado un estudio de los diferentes aspectos del arabe relacionados con dicha tarea; 2. Analizado el estado del arte del REN; 3. Llevado a cabo una comparativa de los resultados obtenidos por diferentes tecnicas de aprendizaje automatico; 4. Desarrollado un metodo basado en la combinacion de diferentes clasificadores, donde cada clasificador trata con una sola clase de entidades nombradas y emplea el conjunto de caracteristicas y la tecnica de aprendizaje automatico mas adecuados para la clase de entidades nombradas en cuestion. Nuestros experimentos han sido evaluados sobre nueve conjuntos de test. / Benajiba, Y. (2009). Arabic named entity recognition [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8318

Page generated in 0.1052 seconds