Spelling suggestions: "subject:"artificial neuralnetwork""
1 |
Inteligentni softverski sistem za dijagnostiku metaboličkog sindroma / INTELIGENT SOFTWARE SYSTEM FOR METABOLIC SYNDROMEDIAGNOSTICSIvanović Darko 16 April 2018 (has links)
<p>Doktorska disertacija razmatra problem algoritamske dijagnostike<br />metaboličkog sindroma na osnovu lako merljivih parametara: pol,<br />starosna dob, indeks telesne mase, odnos obima struka i visine,<br />sistolni i dijastolni krvni pritisak. U istraživanju su primenjene i<br />eksperimentalno ispitane tri različite metode mašinskog učenja:<br />stabla odluke, linearna regresija i veštačke neuronske mreže.<br />Pokazano je da veštačke neuronske mreže daju visok nivo<br />prediktivnih vrednosti dovoljan za primenu u praksi. Korišćenjem<br />dobijenog rezultata definisan je i implementiran inteligentni<br />softverski sistem za dijagnostiku metaboličkog sindroma.</p> / <p>The doctoral dissertation examines the problem of algorithmic diagnostics of<br />the metabolic syndrome based on easily measurable parameters: sex, age,<br />body mass index, waist and height ratio, systolic and diastolic blood<br />pressure. In the study, three different methods of machine learning were<br />applied and experimentally examined: decision trees, linear regression and<br />artificial neural networks. It has been shown that artificial neural networks<br />give a high level of predictive value sufficient to be applied in practice. Using<br />the obtained result, an intelligent software system for the diagnosis of<br />metabolic syndrome has been defined and implemented.</p>
|
2 |
Primena mašinskog učenja u problemu nedostajućih podataka pri razvoju prediktivnih modela / Application of machine learning to the problem of missing data in the development of predictive modelsVrbaški Dunja 20 July 2020 (has links)
<p>Problem nedostajućih podataka je često prisutan prilikom razvoja<br />prediktivnih modela. Umesto uklanjanja podataka koji sadrže<br />vrednosti koje nedostaju mogu se primeniti metode za njihovu<br />imputaciju. Disertacija predlaže metodologiju za pristup analizi<br />uspešnosti imputacija prilikom razvoja prediktivnih modela. Na<br />osnovu iznete metodologije prikazuju se rezultati primene algoritama<br />mašinskog učenja, kao metoda imputacije, prilikom razvoja određenih,<br />konkretnih prediktivnih modela.</p> / <p>The problem of missing data is often present when developing predictive<br />models. Instead of removing data containing missing values, methods for<br />imputation can be applied. The dissertation proposes a methodology for<br />analysis of imputation performance in the development of predictive models.<br />Based on the proposed methodology, results of the application of machine<br />learning algorithms, as an imputation method in the development of specific<br />models, are presented.</p>
|
Page generated in 0.0598 seconds