• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stereoselective Radical Transformations with In Situ-Generated Aryl and Alkyl Diazomethanes via Co(II)-Based Metalloradical Catalysis

Wang, Yong January 2018 (has links)
Thesis advisor: X. Peter Zhang / Among recent advances in devising different strategies for stereoselective homolytic reactions, metalloradical catalysis (MRC) has emerged as a conceptually new approach for controlling stereoselectivity of radical reactions. As stable metalloradicals, cobalt(II) complexes of D₂-symmetric chiral amidoporphyrins [Co(D₂-Por)] have proven to be effective catalysts for homolytically activating a series of diazo compounds to generate α-Co(III)-alkyl radicals for various C-centered radical transformations with well-confined reactivity and selectivity. Nevertheless, the applications of donor-, donor/donor- and alkyl diazo compounds have been largely underdeveloped. This dissertation mainly focuses on how the chemistry of these types of diazo compounds was initiated by using commonly available aldehyde-derived sulfonylhydrazones as diazo surrogates. In the context of Co(II)-MRC, in situ-generated diazo compounds can be effectively activated for various asymmetric radical transformations, including intermolecular radical cyclopropanation of alkenes and intramolecular radical alkylation of C–H bonds. First, as a proof of concept, we have demonstrated the feasibility of using aryl aldehyde-derived sulfonylhydrazones as new radical precursors for diastereo- and enantioselective radical cyclopropanation of alkenes, and proven that the diazo in situ-generation protocol is well compatible with the catalytic radical process. Second, we have expanded the application of Co(II)-based MRC to a new territory by employing aliphatic diazo compounds for asymmetric cyclopropanation. The system is highlighted by the excellent enantioselectivity together with remarkable cis-selectivity. Finally, with the utilization of linear aliphatic aldehyde sulfonylhydrazones as diazo precursors, we have presented a new radical cyclization mode, involving hydrogen atom abstraction and radical substitution, for enantioselective synthesis of common five-membered rings via radical C–H alkylation. The system would offer a new retrosynthetic paradigm for construction of ring structures, where C–C bond can be disconnected as common C=O and C–H units of linear aldehydes. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.1003 seconds