Spelling suggestions: "subject:"aryl diazomethane"" "subject:"aryl diazomethan""
1 |
Stereoselective Radical Transformations with In Situ-Generated Aryl and Alkyl Diazomethanes via Co(II)-Based Metalloradical CatalysisWang, Yong January 2018 (has links)
Thesis advisor: X. Peter Zhang / Among recent advances in devising different strategies for stereoselective homolytic reactions, metalloradical catalysis (MRC) has emerged as a conceptually new approach for controlling stereoselectivity of radical reactions. As stable metalloradicals, cobalt(II) complexes of D₂-symmetric chiral amidoporphyrins [Co(D₂-Por)] have proven to be effective catalysts for homolytically activating a series of diazo compounds to generate α-Co(III)-alkyl radicals for various C-centered radical transformations with well-confined reactivity and selectivity. Nevertheless, the applications of donor-, donor/donor- and alkyl diazo compounds have been largely underdeveloped. This dissertation mainly focuses on how the chemistry of these types of diazo compounds was initiated by using commonly available aldehyde-derived sulfonylhydrazones as diazo surrogates. In the context of Co(II)-MRC, in situ-generated diazo compounds can be effectively activated for various asymmetric radical transformations, including intermolecular radical cyclopropanation of alkenes and intramolecular radical alkylation of C–H bonds. First, as a proof of concept, we have demonstrated the feasibility of using aryl aldehyde-derived sulfonylhydrazones as new radical precursors for diastereo- and enantioselective radical cyclopropanation of alkenes, and proven that the diazo in situ-generation protocol is well compatible with the catalytic radical process. Second, we have expanded the application of Co(II)-based MRC to a new territory by employing aliphatic diazo compounds for asymmetric cyclopropanation. The system is highlighted by the excellent enantioselectivity together with remarkable cis-selectivity. Finally, with the utilization of linear aliphatic aldehyde sulfonylhydrazones as diazo precursors, we have presented a new radical cyclization mode, involving hydrogen atom abstraction and radical substitution, for enantioselective synthesis of common five-membered rings via radical C–H alkylation. The system would offer a new retrosynthetic paradigm for construction of ring structures, where C–C bond can be disconnected as common C=O and C–H units of linear aldehydes. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
Page generated in 0.1003 seconds