• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

pcApriori: Scalable apriori for multiprocessor systems

Schlegel, Benjamin, Kiefer, Tim, Kissinger, Thomas, Lehner, Wolfgang 16 September 2022 (has links)
Frequent-itemset mining is an important part of data mining. It is a computational and memory intensive task and has a large number of scientific and statistical application areas. In many of them, the datasets can easily grow up to tens or even several hundred gigabytes of data. Hence, efficient algorithms are required to process such amounts of data. In the recent years, there have been proposed many efficient sequential mining algorithms, which however cannot exploit current and future systems providing large degrees of parallelism. Contrary, the number of parallel frequent-itemset mining algorithms is rather small and most of them do not scale well as the number of threads is largely increased. In this paper, we present a highly-scalable mining algorithm that is based on the well-known Apriori algorithm; it is optimized for processing very large datasets on multiprocessor systems. The key idea of pcApriori is to employ a modified producer--consumer processing scheme, which partitions the data during processing and distributes it to the available threads. We conduct many experiments on large datasets. pcApriori scales almost linear on our test system comprising 32 cores.

Page generated in 0.1114 seconds