• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 5
  • 1
  • Tagged with
  • 32
  • 32
  • 16
  • 13
  • 11
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Moderní asymptotické perspektivy na modelování chyb v měřeních / Modern Asymptotic Perspectives on Errors-in-variables Modeling

Pešta, Michal January 2010 (has links)
A linear regression model, where covariates and a response are subject to errors, is considered in this thesis. For so-called errors-in-variables (EIV) model, suitable error structures are proposed, various unknown parameter estimation techniques are performed, and recent algebraic and statistical results are summarized. An extension of the total least squares (TLS) estimate in the EIV model-the EIV estimate-is invented. Its invariant (with respect to scale) and equivariant (with respect to the covariates' rotation, to the change of covariates direction, and to the interchange of covariates) properties are derived. Moreover, it is shown that the EIV estimate coincides with any unitarily invariant penalizing solution to the EIV problem. It is demonstrated that the asymptotic normality of the EIV estimate is computationally useless for a construction of confidence intervals or hypothesis testing. A proper bootstrap procedure is constructed to overcome such an issue. The validity of the bootstrap technique is proved. A simulation study and a real data example assure of its appropriateness. Strong and uniformly strong mixing errors are taken into account instead of the independent ones. For such a case, the strong consistency and the asymptotic normality of the EIV estimate are shown. Despite of that, their...
22

Estimadores do tipo n?cleo para Vari?vei s I.I.D. com espa?o de estados geral

Silva, Mariana Barbosa da 31 May 2012 (has links)
Made available in DSpace on 2014-12-17T15:26:39Z (GMT). No. of bitstreams: 1 MarianaBS_DISSERT.pdf: 5316617 bytes, checksum: 4fb0344851aa8f373aa2dab90bb6d3c5 (MD5) Previous issue date: 2012-05-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work, the paper of Campos and Dorea [3] was detailed. In that article a Kernel Estimator was applied to a sequence of random variables with general state space, which were independent and identicaly distributed. In chapter 2, the estimator?s properties such as asymptotic unbiasedness, consistency in quadratic mean, strong consistency and asymptotic normality were verified. In chapter 3, using R software, numerical experiments were developed in order to give a visual idea of the estimate process / Neste trabalho estudamos um dos m?todos n?o-param?trico: os Estimadores do Tipo N?cleo associado a uma sequ?ncia de vari?veis aleat?rias independentes e identicamente distribu?das com espa?o de estados geral, mais precisamente o trabalho de Campos e Dorea [3]. No Cap?tulo 2 verificamos as boas qualidades dessa classe de estimadores como n?o v?cio assint?tico, converg?ncia em m?dia quadr?tica, consist?ncia forte e normalidade assint?tica. No Cap?tulo 3 com o auxilio do software R temos uma id?ia visual do que ocorre no processo de estima??o
23

Optimal tests for panel data

Bennala, Nezar 14 September 2010 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétriques localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour deux modèles de données de panel. Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance, permet d'obtenir les procédures nonparamétriques.<p><p><p><p>Dans le premier chapitre, nous considérons un modèle à erreurs composées et nous nous intéressons au problème qui consiste à tester l'absence de l'effet individuel aléatoire. Nous<p>établissons la propriété de normalité locale asymptotique (LAN), ce qui nous permet de construire des procédures paramétriques localement et asymptotiquement optimales (“les plus stringentes”)<p>pour le problème considéré. L'optimalité de ces procédures est liée à la densité-cible f1. Ces propriétés d'optimalité sont hautement paramétriques puisqu'elles requièrent que la densité sous-jacente soit f1. De plus, ces procédures ne seront valides que si la densité-cible f1 et la densité sous-jacent g1 coincïdent. Or, en pratique, une spécification correcte de la densité sous-jacente g1 est non réaliste, et g1 doit être considérée comme un paramètre de nuissance. Pour éliminer cette nuisance, nous adoptons l'argument d'invariance et nous nous restreignons aux procédures fondées sur des statistiques qui sont mesurables par rapport au vecteur des rangs. Les tests que nous obtenons restent valide quelle que soit la densité sous-jacente et sont localement et asymptotiquement les plus stringents. Afin d'avoir des renseignements sur l'efficacité des tests<p>fondés sur les rangs sous différentes lois, nous calculons les efficacités asymptotiques relatives de ces tests par rapport aux tests pseudo-gaussiens, sous des densités g1 quelconques. Enfin, nous proposons quelques simulations pour comparer les performances des procédures proposées. <p><p><p><p>Dans le deuxième chapitre, nous considérons un modèle à erreurs composées avec autocorrélation d'ordre 1 et nous montrons que ce modèle jouit de la propriété LAN. A partir de ce résultat, nous construisons des tests optimaux, au sens local et asymptotique, pour trois problèmes de tests importants dans ce contexte :(a) test de l'absence d'effet individuel et d'autocorrélation; (b) test de l'absence d'effet individuel en présence d'une autocorrélation non<p>spécifiée; et (c) test de l'absence d'autocorrélation en présence d'un effet individuel non spécifié. Enfin, nous proposons quelques simulations pour comparer les performances des tests pseudogaussiens<p>et des tests classiques. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
24

Sur l'estimation non paramétrique de la densité et du mode dans les modèles de données incomplètes et associées / Non parametric estimation of the density and mode for incompletes and associated data

Ferrani, Yacine 23 November 2014 (has links)
Cette thèse porte sur l'étude des propriétés asymptotiques d'un estimateur non paramétrique de la densité de type Parzen-Rosenblatt, sous un modèle de données censurées à droite, vérifiant une structure de dépendance de type associé. Dans ce cadre, nous rappelons d'abord les résultats existants, avec détails, dans les cas i.i.d. et fortement mélangeant (α-mélange). Sous des conditions de régularité classiques, il est établi que la vitesse de coonvergence uniforme presque sûre de l'estimateur étudié, est optimale. Dans la partie dédiée aux résultats de cette thèse, deux résultats principaux et originaux sont présentés : le premier résultat concerne la convergence uniforme presque sûre de l'estimateur étudié sous l'hypothèse d'association. L'outil principal ayant permis l'obtention de la vitesse optimale est l'adaptation du Théorème de Doukhan et Neumann (2007), dans l'étude du terme des fluctuations (partie aléatoire) de l'écart entre l'estimateur considéré et le paramètre étudié (densité). Comme application, la convergence presque sûre de l'estimateur non paramétrique du mode est établie. Les résultats obtenus ont fait l'objet d'un article accepté pour publication dans Communications in Statistics-Theory and Methods ; Le deuxième résultat établit la normalité asymptotique de l'estimateur étudié sous le même modèle et constitute ainsi une extension au cas censuré, du résultat obtenu par Roussas (2000). Ce résultat est soumis pour publication. / This thesis deals with the study of asymptotic properties of e kernel (Parzen-Rosenblatt) density estimate under associated and censored model. In this setting, we first recall with details the existing results, studied in both i.i.d. and strong mixing condition (α-mixing) cases. Under mild standard conditions, it is established that the strong uniform almost sure convergence rate, is optimal. In the part dedicated to the results of this thesis, two main and original stated results are presented : the first result concerns the strong uniform consistency rate of the studied estimator under association hypothesis. The main tool having permitted to achieve the optimal speed, is the adaptation of the Theorem due to Doukhan and Neumann (2007), in studying the term of fluctuations (random part) of the gap between the considered estimator and the studied parameter (density). As an application, the almost sure convergence of the kernel mode estimator is established. The stated results have been accepted for publication in Communications in Statistics-Theory & Methods ; The second result establishes the asymptotic normality of the estimator studied under the same model and then, constitute an extension to the censored case, the result stated by Roussas (2000). This result is submitted for publication.
25

Estimation de régularité locale / Local regularity estimation

Servien, Rémi 12 March 2010 (has links)
L'objectif de cette thèse est d'étudier le comportement local d'une mesure de probabilité, notamment à l'aide d'un indice de régularité locale. Dans la première partie, nous établissons la normalité asymptotique de l'estimateur des kn plus proches voisins de la densité. Dans la deuxième, nous définissons un estimateur du mode sous des hypothèses affaiblies. Nous montrons que l'indice de régularité intervient dans ces deux problèmes. Enfin, nous construisons dans une troisième partie différents estimateurs pour l'indice de régularité à partir d'estimateurs de la fonction de répartition, dont nous réalisons une revue bibliographique. / The goal of this thesis is to study the local behavior of a probability measure, using a local regularity index. In the first part, we establish the asymptotic normality of the nearest neighbor density estimate. In the second, we define a mode estimator under weakened hypothesis. We show that the regularity index interferes in this two problems. Finally, we construct in a third part various estimators of the regularity index from estimators of the distribution function, which we achieve a review.
26

Inférence statistique dans le modèle de régression logistique avec fraction immune / Statistical inference in logistic regression model with immune fraction

Diop, Aba 15 November 2012 (has links)
Les modèles linéaires généralisés sont une généralisation des modèles de régression linéaire, et sont très utilisés dans le domaine du vivant. Le modèle de régression logistique, l'un des modèles de cette classe, très souvent utilisé dans les études biomédicales demeure le modèle de régression le plus approprié quand il s'agit de modéliser une variable discrète de nature binaire. Dans cette thèse, nous nous intéressons au problème de l'inférence statistique dans le modèle de régression logistique, en présence d'individus immunes dans la population d'étude.Dans un premier temps, nous considérons le problème de l'estimation dans le modèle de régression logistique en présence d'individus immunes, qui entre dans le cadre des modèles de régression à excès de zéros (ou zéro-inflatés). Un individu est dit immune s'il n'est pas exposé à l'événement d'intérêt. Le statut d'immunité est inconnu sauf si l'événement d'intérêt a été observé. Nous développons une méthode d'estimation par maximum de vraisemblance en proposant une modélisation conjointe de l'immunité et des risques d'infection. Nous établissons d'abord l'identifiabilité du modèle proposé. Puis, nous montrons l'existence de l'estimateur du maximum de vraisemblance des paramètres de ce modèle. Nous montrons ensuite,la consistance de cet estimateur, et nous établissons sa normalité asymptotique. Enfin, nous étudions, au moyen de simulations, leur comportement sur des échantillons de taille finie.Dans un deuxième temps, nous nous intéressons à la construction de bandes de confiance simultanées pour la probabilité d'infection, dans le modèle de régression logistique avec fraction immune. Nous proposons trois méthodes de constructions de bandes de confiance pour la fonction de régression. La première méthode (méthodede Scheffé) utilise la propriété de normalité asymptotique de l'estimateur du maximum de vraisemblance, et une approximation par une loi du khi deux pour approcher le quantile nécessaire à la construction des bandes. La deuxième méthode utilise également la propriété de normalité asymptotique de l'estimateur du maximum de vraisemblance et est basée sur une égalité classique de (Landau & Sheep 1970). La troisième méthode (méthode bootstrap) repose sur des simulations, pour estimer le quantile approprié de la loi du supremum d'un processus gaussien. Enfin, nous évaluons, au moyen de simulations, leurs propriétés sur des échantillons de taille finie.Enfin, nous appliquons les résultats de modélisation à des données réelles surla dengue. Il s'agit d'une maladie vectorielle tropicale à transmission strictement inter-humaine. Les résultats montrent que les probabilités d'infection estimées à partir de notre approche de modélisation sont plus élevées que celles obtenues à partir d'un modèle de régression logistique standard qui ne tient pas compte d'une possible immunité. En particulier, les estimations fournies par notre approche suggèrent que le sous-poids constitue un facteur de risque majeur de l'infection par la dengue, indépendamment de l'âge. / Generalized linear models are a generalization of linear regression models, and are widely used in the field of life. The logistic regression model, one of this class of models, widely used in biomedical studies remains the most appropriate regression model when it comes to model discrete variable, binary in nature. In this thesis, we investigate the problem of statistical inference in the logistic regression model, in the presence of immune individuals in the study population.At first, we consider the problem of estimation in the logistic regression model in the presence of immune individuals that enters in the case of zero-inflated regression models. A subject is said to be immune if he cannot experience the outcome of interest. The immune status is unknown unless the event of interest has been observed. We develop a maximum like lihood estimation procedure for this problem, based on the joint modeling of the binary response of interest and the cure status. We investigate the identifiability of the resulting model. Then, we establish the existence, consistency and asymptotic normality of the proposed estimator, and we conduct a simulation study to investigate its finite-sample behavior. In a second time, we focus on the construction of simultaneous confidence bands for the probability of infection in the logistic regression model with immune fraction.We propose three methods of construction of confidence bands for the regression function. The first method (Scheffe's method) uses the asymptotic normality of the maximum like lihood estimator, and an approximation by the chi-squared distribution to approximate the necessary quantile for the construction of bands. The second method uses also the asymptotic normality of the maximum like lihood estimator and is based on a classical equality by (Landau & Sheep 1970). The third method (bootstrap method) is based on simulations, to estimate the appropriate quantile of the law of a supremum of a Gaussian process. Finally, we conduct a simulation study to investigate its finite-sample properties.Finally, we consider a study of dengue fever, which is a tropical mosquito-borneviral human disease, strictly inter-human. The results show that, the estimated probabilities of infection obtained from our approach are larger than the ones derived from a standard analysis that does not take account of the possible immunity. Inparticular, the estimates provided by our approach suggest that underweight constitutes a major risk factor for dengue infection, irrespectively of age.
27

Scale Invariant Equations and Their Modified EM Algorithm for Estimating a Two-Component Mixture Model

Ukenazor, Ifeanyichukwu Valentine 07 1900 (has links)
In this work, we propose a novel two-component mixture model: the first component is the three-parameter generalized Gaussian distribution (GGD), and the second is a new three-parameter family of positive densities on the real line. The novelty of our mixture model is that we allow the two components to have totally different parametric families of distributions with asymmetric tails of the mixture density. We extend the scale invariant variable fractional moments (SIVFM) method proposed by Song for the GGD to the parameter estimation of our mixture model. We show that the SIVFM population and sample equations for the second component share very similar desirable global properties such as convexity and unique global roots as those for the GGD given in earlier research. The two-component mixing of these properties make the SIVFM mixture population and estimation equations well-behaved resulting in easy to compute estimators without the issue with starting values. The asymptotic results such as consistency and limiting distribution of the estimators are presented. Furthermore, SIVFM estimators can also serve as a consistent initial estimator for the EM algorithm leading to improved accuracy of the EM algorithm. These algorithms are applied to the analysis of the average amount of precipitation (rainfall) for each of 70 United States (and Puerto Rican) cities clearly demonstrating the bimodal distribution of the estimated mixture density.
28

Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergences / Value at risk and expected shortfall for weak dependent random variables : nonparametric estimations and limit theorems

Kabui, Ali 19 September 2012 (has links)
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR. / To quantify and measure the risk in an environment partially or completely uncertain is probably one of the major issues of the applied research in financial mathematics. That relates to the economy, finance, but many other fields like health via the insurances for example. One of the fundamental difficulties of this process of management of risks is to model the under lying credits, then approach the risk from observations or simulations. As in this field, the risk or uncertainty plays a fundamental role in the evolution of the credits; the recourse to the stochastic processes and with the statistical methods becomes crucial. In practice the parametric approach is largely used.It consists in choosing the model in a parametric family, to quantify the risk according to the parameters, and to estimate its risk by replacing the parameters by their estimates. This approach presents a main risk, that badly to specify the model, and thus to underestimate or over-estimate the risk. Based within and with a view to minimizing the risk model, we choose to tackle the question of the quantification of the risk with a nonparametric approach which applies to models as general as possible. We concentrate to two measures of risk largely used in practice and which are sometimes imposed by the national or international regulations. They are the Value at Risk (VaR) which quantifies the maximum level of loss with a high degree of confidence (95% or 99%). The second measure is the Expected Shortfall (ES) which informs about the average loss beyond the VaR.
29

Contribution à l'économétrie des séries temporelles à valeurs entières / Contribution to econometrics of time series with integer values

Ahmad, Ali 05 December 2016 (has links)
Dans cette thèse, nous étudions des modèles de moyennes conditionnelles de séries temporelles à valeurs entières. Tout d’abord, nous proposons l’estimateur de quasi maximum de vraisemblance de Poisson (EQMVP) pour les paramètres de la moyenne conditionnelle. Nous montrons que, sous des conditions générales de régularité, cet estimateur est consistant et asymptotiquement normal pour une grande classe de modèles. Étant donné que les paramètres de la moyenne conditionnelle de certains modèles sont positivement contraints, comme par exemple dans les modèles INAR (INteger-valued AutoRegressive) et les modèles INGARCH (INteger-valued Generalized AutoRegressive Conditional Heteroscedastic), nous étudions la distribution asymptotique de l’EQMVP lorsque le paramètre est sur le bord de l’espace des paramètres. En tenant compte de cette dernière situation, nous déduisons deux versions modifiées du test de Wald pour la significativité des paramètres et pour la moyenne conditionnelle constante. Par la suite, nous accordons une attention particulière au problème de validation des modèles des séries temporelles à valeurs entières en proposant un test portmanteau pour l’adéquation de l’ajustement. Nous dérivons la distribution jointe de l’EQMVP et des autocovariances résiduelles empiriques. Puis, nous déduisons la distribution asymptotique des autocovariances résiduelles estimées, et aussi la statistique du test. Enfin, nous proposons l’EQMVP pour estimer équation-par-équation (EpE) les paramètres de la moyenne conditionnelle des séries temporelles multivariées à valeurs entières. Nous présentons les hypothèses de régularité sous lesquelles l’EQMVP-EpE est consistant et asymptotiquement normal, et appliquons les résultats obtenus à plusieurs modèles des séries temporelles multivariées à valeurs entières. / The framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models.
30

Plans d'expérience optimaux en régression appliquée à la pharmacocinétique / Optimal sampling designs for regression applied to pharmacokinetic

Belouni, Mohamad 09 October 2013 (has links)
Le problème d'intérêt est d'estimer la fonction de concentration et l'aire sous la courbe (AUC) à travers l'estimation des paramètres d'un modèle de régression linéaire avec un processus d'erreur autocorrélé. On construit un estimateur linéaire sans biais simple de la courbe de concentration et de l'AUC. On montre que cet estimateur construit à partir d'un plan d'échantillonnage régulier approprié est asymptotiquement optimal dans le sens où il a exactement la même performance asymptotique que le meilleur estimateur linéaire sans biais (BLUE). De plus, on montre que le plan d'échantillonnage optimal est robuste par rapport à la misspecification de la fonction d'autocovariance suivant le critère du minimax. Lorsque des observations répétées sont disponibles, cet estimateur est consistant et a une distribution asymptotique normale. Les résultats obtenus sont généralisés au processus d'erreur de Hölder d'indice compris entre 0 et 2. Enfin, pour des tailles d'échantillonnage petites, un algorithme de recuit simulé est appliqué à un modèle pharmacocinétique avec des erreurs corrélées. / The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with autocorrelated error process. We construct a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator (BLUE). Moreover, we prove that the optimal design is robust with respect to a misspecification of the autocovariance function according to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. All those results are extended to the error process of Hölder with index including between 0 and 2. Finally, for small sample sizes, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors.

Page generated in 0.0941 seconds