221 |
Viscous conservation laws with boundary layers.January 2005 (has links)
Wang Jing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 55-59). / Abstracts in English and Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / Introduction --- p.3 / Chapter 1 --- Formulation of the Problem --- p.10 / Chapter 1.1 --- Reformulated Navier-Stokes Equations --- p.10 / Chapter 1.2 --- Linearized Problems --- p.15 / Chapter 2 --- Construction of the Approximate Solution --- p.19 / Chapter 2.1 --- Two-scale Asymptotic Expansions --- p.19 / Chapter 2.2 --- Determination of Each Inner and Boundary Terms --- p.22 / Chapter 2.3 --- Truncation Terms --- p.31 / Chapter 3 --- Estimates of the Error Term of the Approximate Solution and Main Results --- p.33 / Chapter 3.1 --- Error Equations --- p.33 / Chapter 3.2 --- Energy Estimates --- p.36 / Chapter 3.2.1 --- BasicL2 Estimates --- p.36 / Chapter 3.2.2 --- Tangential Derivatives Estimates --- p.38 / Chapter 3.2.3 --- Normal Derivatives Estimates --- p.49 / Chapter 3.3 --- Pointwise Estimates --- p.52 / Bibliography --- p.55
|
222 |
Asymptotic behavior of weak solutions to non-convex conservation laws.January 2005 (has links)
Zhang Hedan. / Thesis submitted in: September 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 78-81). / Chapter 1 --- Introduction --- p.5 / Chapter 2 --- Convex Scalar Conservation Laws --- p.9 / Chapter 2.1 --- Cauchy Problems and Weak Solutions --- p.9 / Chapter 2.2 --- Rankine-Hugoniot Condition --- p.11 / Chapter 2.3 --- Entropy Condition --- p.13 / Chapter 2.4 --- Uniqueness of Weak Solution --- p.15 / Chapter 2.5 --- Riemann Problems --- p.17 / Chapter 3 --- General Scalar Conservation Laws --- p.21 / Chapter 3.1 --- Entropy-Entropy Flux Pairs --- p.21 / Chapter 3.2 --- Admissibility Conditions --- p.22 / Chapter 3.3 --- Kruzkov Theory --- p.23 / Chapter 4 --- Elementary waves and Riemann Problems for Nonconvex Scalar Conservation Laws --- p.35 / Chapter 4.1 --- Basic Facts --- p.35 / Chapter 4.2 --- Riemann Solutions --- p.36 / Chapter 5 --- Asymptotic Behavior --- p.46 / Chapter 5.1 --- Periodic Asymptotic Behavior --- p.46 / Chapter 5.2 --- Asymptotic Behavior of Convex Conservation Law --- p.49 / Chapter 5.3 --- Asymptotic Behavior of Non-convex case --- p.52 / Chapter 5.3.1 --- L∞ Behavior --- p.53 / Chapter 5.3.2 --- Wave-Interactions and Asymptotic Behavior Toward Shock Waves --- p.55 / Bibliography --- p.78
|
223 |
Teoria do potencial logarítmico e zeros de polinômiosSantos, Eliel José Camargo dos [UNESP] 14 March 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-03-14Bitstream added on 2014-06-13T20:09:06Z : No. of bitstreams: 1
santos_ejc_me_sjrp.pdf: 888426 bytes, checksum: 818c57bcf63e1b4a38fe5843f7d82fb2 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Estudamos alguns tópicos da Teoria do Potencial Logarítmico. Enfatizamos o problema de caracterizar a medida do equilíbrio. Provamos um resultado sobre a assintótica da medida contadora de zeros, associada com uma classe de polinômios. / We study some basic topics of The Theory of the Logarithmic potential. We emphasize on the problem by characterizing the equilibrium measure. A result on the asymptotics of the zero counting measure associated with a class of polynomials is proved.
|
224 |
Asymptotic behavior of solutions to some systems of conservation laws. / CUHK electronic theses & dissertations collectionJanuary 2002 (has links)
Wang Hui Ying. / "June 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 67-72). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
225 |
Asymptotic behavior of solutions to fluid dynamical equations. / CUHK electronic theses & dissertations collectionJanuary 2009 (has links)
This thesis deals with the problem of the asymptotic behavior of solutions to several nonlinear equations from fluid dynamics on both mesoscopic and macroscopic levels, including Boltzmann equation, compressible Navier-Stokes equations and the system of viscous conservation laws with positive definite viscosity matrix. The main purpose is to study the asymptotic behavior of solutions to those equations towards linear and nonlinear waves, such as shock waves, rarefaction waves and contact discontinuities as either the times goes to infinity, or the viscosity and heat conductivity go to zero for the macroscopic equations or the mean free path goes to zero for the mesoscopic equations. Those limit processes are singular. For the system of viscous conservation laws, we show the large time asymptotic nonlinear stability of a superposition of viscous shock waves and viscous contact waves for the system of viscous conservation laws with small initial perturbations, provided that the strengths of these viscous waves are small and of the same order. The results are obtained by elementary weighted energy estimates based on the underlying wave structure and a new estimate on the heat equation. For the Boltzmann equation, the main purpose is to study the asymptotic equivalence for the hard-sphere collision model to its corresponding Euler equations of compressible gas dynamics in the limit of small mean free path. When the fluid flow is a smooth rarefaction (or centered-rarefaction) wave with finite strength, the corresponding Boltzmann solution exists globally in time, and the solution converges to the rarefaction wave uniformly for all time (or away from t = 0) as the mean free path epsilon → 0. A decomposition of a Boltzmann solution into its macroscopic (fluid) part and microscopic (kinetic) part is adopted to rewrite the Boltzmann equation in a form of compressible Navier-Stokes equations with source terms. As a by-product, the same asymptotic equivalence of the full compressible Navier-Stokes equations to its corresponding Euler equations in the limit of small viscosity and heat-conductivity (depending on the viscosity) is also obtained. / Zeng, Huihui. / Adviser: Zhouping Xin. / Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 102-110). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
226 |
On asymptotic analysis and error bounds in optimization. / CUHK electronic theses & dissertations collectionJanuary 2001 (has links)
He Yiran. / Includes index. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 74-80) and index.. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
227 |
Self-assembly in mechanical systemsKwiecinski, James Andrew January 2018 (has links)
Inspired by biological membrane shaping in the cell through means of curvature-inducing proteins, we investigate the interplay between membrane curvature and the distribution and movement of shape-inducing objects which are free to move as a consequence of the underlying shape. We initially study the self-assembly of a filament, taken as a proxy for the cross-section of a biomembrane, which is primarily driven by the chemical kinetics of attaching proteins and find that, under certain mechanical stiffness regimes of the attaching proteins, pattern formation occurs. Regions of high and low protein concentration form before spatially uniform filament shapes are obtained by means of protein adhesion and movement governed by diffusion and local curvature-seeking. However, noting that the curvature-mediated protein movement on membranes has been biologically observed to be long-range, we next study the self-assembly of embedded inclusions on a membrane as a result of the underlying geometry. We first derive an interaction law for the shape-mediated interaction of inclusions which break symmetry and find that there is a finite equilibrium distance to which the inclusions will aggregate. We derive corresponding equations of motion which describe this curvature-mediated aggregation mechanism and, using this framework, we investigate some of the properties of these self-assembled configurations, including their energy, stability, and their collective elastic behavior. Lastly, we consider the interaction energies of embedded inclusions on a periodic domain and determine that this mechanism may explain computational results of how proteins form rings to promote tubulation on cylindrical membranes.
|
228 |
Variété centrale hautement oscillante et une application en écologie / Highly oscillating center manifold and an application in ecologySauzeau, Julie 07 June 2016 (has links)
Nous avons étudié un système différentiel régi par deux dynamiques : l'une de type variété centrale et l'autre de type oscillation rapide périodique. Nous avons cherché à obtenir des informations sur le comportement qualitatif du système et à l'approcher. Nous avons démontré l'existence d'une dynamique asymptotique rapidement oscillante et nous l'avons utilisée pour approcher le système. Ensuite, nous avons appliqué ces résultats à l'étude d'un système écologique d'interaction proie-prédateur. De plus, nous avons utilisé la théorie des B-séries pour obtenir des développements formels à tout ordre des quantités liées à la dynamique asymptotique. Enfin, nous avons approché le système pour tout temps par la composée d'un changement de variable et de la solution d'un système différentiel partiellement découplé. / We have studied a differential system ruled by two dynamics : a center manifold dynamics and a periodic highly oscillating dynamics. We wanted to find informations about the qualitative behaviour of the system, and to approximate it. We have proved the existence of a highly oscillating asymptotic dynamics, and we have used it approximate the system. Then, we have applied this results to an ecological system of prey-predator interaction. Moreover, we have used the B-series theory to obtain formal expansions of the quantities related to the center manifold. Lastly, we have approximated the system for all time by the composition of a change of variable and of the solution of a partially decoupled differential system.
|
229 |
Etude mathématique et numérique de quelques modèles cinétiques et de leurs asymptotiques : limites de diffusion et de diffusion anormale / Mathematical and numerical study of some kinetic models and of their asymptotics : diffusion and anomalous diffusion limitsHivert, Hélène 05 October 2016 (has links)
L'objet de cette thèse est la construction de schémas numériques pour les équations cinétiques dans différents régimes de diffusion anormale. Comme le modèle devient raide en s'approchant du modèle asymptotique, les méthodes numériques standard deviennent coûteuses dans ce régime. Les schémas Asymptotic Preserving ont été introduits pour pallier à cette difficulté. Ils sont en effet stables le long de la transition du régime mésoscopique au régime microscopique. Dans le premier chapitre, nous considérons le cas d'une distribution d'équilibre qui est une fonction à queue lourde et dont le moment d'ordre 2 est infini. Le poids important des grandes vitesses de l'équilibre fait tomber la limite de diffusion usuelle en défaut, et on montre que le modèle asymptotique est une équation de diffusion fractionnaire. En nous basant sur une analyse asymptotique formelle de la convergence vers le modèle limite, nous construisons trois schémas AP pour le problème. La discrétisation en vitesse est discutée afin de prendre en compte correctement les grandes vitesses, et nous montrons que le troisième schéma est en outre uniformément précis au cours de la transition vers le régime microscopique. Dans le chapitre 2, nous étendons ces résultats au cas d'une fréquence de collision dégénérée en 0 qui mène aussi à une équation de diffusion fractionnaire. Nous adaptons ensuite ces méthodes numériques au cas d'une limite de diffusion normale avec scaling en temps anormal dans l'équation cinétique dans le chapitre 3. Dans ce cadre, la lenteur de la convergence vers le modèle asymptotique rend nécessaire une adaptation de l'approche AP des chapitres précédents. Enfin, le chapitre 4 présente un schéma AP pour l'équation cinétique dans le cas heavy-tail du chapitre 1 lorsque l'opérateur de collision est non-local. / In this thesis, we construct numerical schemes for kinetic equations in some anomalous diffusion regimes. As the model becomes stiff when reaching the asymptotic model, the standard numerical methods become costly in this regime. Asymptotic Preserving (AP) schemes have been designed to overcome this difficulty. Indeed, they are uniformly stable along the transition from the mesoscopic regime to the microscopic one. In the first chapter, we study the case of a heavy-tailed equilibrium distribution, with infinite second order moment. The importance of the high velocities in the equilibrium makes the classical diffusion limit fail, and one can prove that the asymptotic model is a fractional diffusion equation. We construct three AP schemes for this problem, based on a formal asymptotic analysis of the convergence towards the limit model. The discretization of the velocities is then discussed to take into account the high velocities. Moreover, we prove that the third scheme enjoys the stronger property of being uniformly accurate along the convergence towards the microscopic regime. In chapter 2, we extend these results to the case of a degenerated collision frequency, also leading to a fractional diffusion limit. In chapter 3, these methods are then adapted to the case of a classical diffusion limit with anomalous time scale in the kinetic equation. In this case, an adaptation of the AP approach of the previous chapter is needed, because of the slow convergence rate of the kinetic equation towards the limit model. Eventually, a AP scheme for kinetic equation with heavy-tailed equilibria and non local collision operator is presented in chapter 4.
|
230 |
Calcul et optimisation d’absorbeurs pendulaires dans une chaîne de traction automobile / Simulation and optimisation of pendular absorbers for Automotive powertrainRenault, Alexandre 12 July 2018 (has links)
Dans le cadre de la réduction des émissions polluantes et de la consommation des véhicules à moteur thermique, les constructeurs cherchent à diminuer la cylindrée et la vitesse de rotation des moteurs de chaines cinématiques. Ces évolutions conduisent, du fait du principe même du moteur à pistons, à une augmentation significative des irrégularités de rotation de celui-ci. Depuis quelques années, le système à pendule est apparu dans les groupes moto-propulseurs automobiles. Il agit à la manière d’un batteur, accordé sur l’ordre d’allumage du moteur thermique, et permet ainsi une réduction des vibrations. Cependant, les fortes non-linéarités intrinsèques aux pendules provoquent un désaccord du système à grande amplitude synonyme de perte de performances. Cette thèse a pour but d’améliorer la compréhension et le comportement du système en interaction avec la chaîne de traction automobile. En renfort des traditionnelles méthodes d’intégrations temporelles, le système non linéaire est résolu par la méthode asymptotique numérique couplée à la méthode de l’équilibrage harmonique. Une méthode originale de continuation d’antirésonance est également proposée ainsi que des règles de conception issues de développements analytiques. La validation par l’expérience montre une amélioration significative des performances du système. / In the context of the reduction of polluting emissions and fuel consumption of thermal engines of vehicles, automotive manufacturers try to reduce cylinder capacity and engine speed of rotation. These evolutions lead to significant increase of irregularities of rotation. The so-called centrifugal pendulum vibration absorber is a recent solution of mitigation of torsional vibrations in automotive powertrains. It acts as a mass damper tuned on the firing order of the engine and allows reduction of vibrations. However, strong non-linearities intrinsic to pendular systems cause a detuning of the device at large amplitude of motion resulting in a loss of performances. This thesis aims to improve the understanding and the behavior of the system in interaction with an automotive driveline. In support of classic time integration procedures, the nonlinear system is solved through the asymptotic numerical method coupled to the harmonic balance method. In addition, an original continuation of antiresonance method is proposed as well as some design rules derived from analytical developments. Experimental validation shows a significant enhancement of performances of the system.
|
Page generated in 0.0414 seconds