• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 13
  • 11
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contribution à l'étude de la stabilité des systèmes électrotechniques / Contribution to the study of the stability of the electrotechnical systems

Marx, Didier 12 November 2009 (has links)
Dans cette thèse différents outils issus de l'automatique non linéaire ont été mis en œuvre et ont permis d'apporter une première solution au problème de stabilité large signal des dispositifs électriques. A l'aide de modèles flous de type Takagi-Sugeno, on a montré qu'il était possible de résoudre le problème de stabilité dans le cas de deux applications électrotechniques à savoir un hacheur contrôlé en tension et l'alimentation par l'intermédiaire un filtre d'entrée d'un dispositif électrique fonctionnant à puissance constante. Dans le cas du hacheur, la taille estimée des bassins d'attraction reste modeste. Les raisons essentielles à l'échec obtenu dans la recherche de bassin de grande taille peut résulter dans le fait que d'une part , la mise sous forme TS du système n'est pas unique et que d'autre part les matrices du sous modèle TS du système ne sont de Hurwitz que dans une gamme très restreinte de variations du rapport cyclique. Dans le cas de l'alimentation par l'intermédiaire d'un filtre d'entrée d'un dispositif fonctionnant à puissance constante, on a montré que l'utilisation d'un modèle flou de type Takagi-Sugeno permettait d'exhiber un domaine d'attraction de taille significative. On a fourni des outils permettant de borner la plage de variations des pôles du système dans un domaine donné de l'espace d'état, domaine dans lequel la stabilité du modèle TS est prouvée. L'utilisation de la D-stabilité permet de connaitre les dynamiques maximales du système. La notion de stabilité exponentielle permet de connaître les dynamiques minimales du système. L'approche utilisée pour prouver la stabilité du système en présence de variations paramétriques, pour les deux systèmes étudiés, n'autorise que des variations extrêmement faibles de la valeur du paramètre autour de sa valeur nominale / In this thesis, various tools resulting from the nonlinear automatic were implemented and made it possible to bring a first solution to the problem of large signal stability of the electric systems. Using Takagi-Sugeno fuzzy models, one showed that it was possible to in the case of solve the problem of stability two electrotechnical applications to knowing a Boost converter controlled in tension and an electric system constituted by an input filter connected to an actuator functioning at constant power. In the case of the Boost converter, the estimated size of attraction domain remains modest. The reasons essential with the failure obtained in the search for domain of big size can result in the fact that on the one hand, the setting TS fuzzy models of the system is not single and that on the other hand the matrices of local model of TS model of the system are of Hurwitz only in one very restricted range of variations of the cyclic ratio. In the case of the electric system via a filter of entry of a functioning device at constant power, one showed that the use of a Takagi-Sugeno fuzzy model allowed exhibit a attraction domain of significant size. One provided tools allowing to limit the variations of the poles of the system in a given field of the state space, domain in which the stability of model TS is proven. The use of D-stability makes it possible to know dynamic maximum system. The concept of exponential stability makes it possible to know dynamic minimal system. The approach used to prove the stability of the system in the presence of parametric variations, for the two studied systems, authorizes only extremely weak variations of the value of the parameter around its maximal value
32

Transformation de Aluthge et vecteurs extrémaux / Aluthge Transform and Extremal Vectors

Verliat, Jérôme 21 December 2010 (has links)
Cette thèse s'articule autour de deux thèmes : une transformation de B(H) introduite par Aluthge et la méthode d'Ansari-Enflo. La première partie fait l'objet de l'étude de la transformation d’Aluthge qui a eu un impact important ces dernières années en théorie des opérateurs. Des résultats optimaux sur la stabilité d'un certain nombre de classes d'opérateurs, telles que la classe des isométries partielles et les classes associées au comportement asymptotique d'un opérateur, sont fournis. Nous étudions également l'évolution d'invariants opératoriels, tels que le polynôme minimal, la fonction minimum, l'ascente et la descente, sous l'action de la transformation ; nous comparons plus précisément les suites des noyaux et images relatives aux itérés d'un opérateur et de sa transformée de Aluthge. La deuxième partie est l'occasion d'étudier la théorie d'Ansari-Enflo, qui a permis de gros progrès pour le problème du sous-espace hyper-invariant. Nous développons plus particulièrement la notion fondatrice de la méthode, celle de vecteur extrémal. La localisation et une nouvelle caractérisation de ces vecteurs sont données. Leur régularité et leur robustesse, au regard de différents paramètres, sont éprouvées. Enfin, nous comparons les vecteurs extrémaux d'un shift à poids et ceux associés à sa transformée d’Aluthge. Cette étude aboutit à la construction d'une suite de vecteurs extrémaux associés aux itérés de la transformation d’Aluthge, pour laquelle certaines propriétés sont mises en évidence. / This thesis is based on two topics : a transformation of B(H) introduced by Aluthge and the Ansari-Enflo method. In the first part, we study the Aluthge transformation which really had an impact on operator theory in the past ten years. Some optimal results about stability for several operators classes, such as isometries class and classes of operators defined by their asymptotic behaviour, are given. We also study changes generated by Aluthge transform about some usual tools in operator theory like minimum polynomial, minimum function, ascent and descent ; precisely, we compare iterated kernels and iterated ranges sequences related to an operator and to its Aluthge transform. The second part is devoted to the study of the Ansari-Enflo theory, which allowed to make progress in the hyper-invariant subspace problem. We develop the notion of extremal vectors which is the fundamental point of the theory. We clarify their spatial localization and a new caracterisation for these vectors is given. Regularity and robustness with regard to different parameters are tried and tested. Finally, we compare extremal vectors associated with weighted shifts and the one corresponding to their Aluthge transform. This study leads to build a sequence of extremal vectors associated with the iterated Aluthge transform, for which we highlight several properties.
33

Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay

Biglands, Adrian Unknown Date
No description available.
34

Effect Of Cross-sectional Nonlinearities On Anisotropic Strip-based Mechanisms

Pollayi, Hemaraju 09 1900 (has links) (PDF)
The goal of this work is to develop and demonstrate a comprehensive analysis of single and multi-body composite strip-beam systems using an asymptotically-correct geometrically nonlinear theory. The comprehensiveness refers to the two distinguishing features of this work, namely the unified framework for the analysis and the inclusion of the usually ignored cross-sectional nonlinearities in thin-beam and multi-beam analyses. The first part of this work stitches together an approach to analyse generally anisotropic composite beams. Based on geometrically exact nonlinear elasticity theory, the nonlinear 3-D beam problem splits into either a linear (conventionally considered) or nonlinear (considered in this work) 2-D analysis of the beam cross-section and a nonlinear 1-D analysis along the beam reference curve. The two sub-tasks of this work (viz. nonlinear analysis of the beam cross-section and nonlinear beam analysis) are accomplished on a single platform using an object-oriented framework. First, two established nonlinear cross-sectional analyses (numerical and analytical), both based on the Variational-Asymptotic Method (VAM), are invoked. The numerical analysis is capable of treating cross-sections of arbitrary geometry and material distributions and can capture certain nonlinear effects such as the trapeze effect. The closed-form analytical analysis is restricted to thin rectangular cross-sections for generally anisotropic composites but captures ALL cross-sectional nonlinearities, and not just the well-known Brazier and trapeze effects. Second, the well-established geometrically-exact nonlinear 1-D governing equations along the beam reference curve, after being generalized to utilize the expressions for nonlinear stiffness matrix, are solved using the mixed variational finite element method. Finally, local 3-D stress, strain and displacement fields for representative sections in the beam are recovered, based on the stress resultants from the 1-D global beam analysis. This part of the work is then validated by applying it to an initially twisted cantilevered laminated composite strip under axial force. The second part is concerned with the dynamic analysis of nonlinear multi-body systems involving elastic strip-like beams made of laminated, anisotropic composite materials using an object-oriented framework. In this work, unconditionally stable time-integration schemes presenting high-frequency numerical dissipation are used to solve the ensuing governing equations. The codes developed based on such time-integration schemes are first validated with the literature for two standard test cases: non-linear spring mass oscillator and pendulum. In order to apply the comprehensive analysis code thus developed to a multi-body system, the four-bar mechanism is chosen as an example. All component bars of the mechanism have thin rectangular cross-sections and are made of fiber reinforced laminates of various types of layups. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. Each component of the mechanism is modeled as a beam based on the first part of this work. Results from this analysis are compared with those available in the literature, both theoretical and experimental. The margins between the linear and non-linear results are evaluated specifically due to the cross-sectional nonlinearities and shown to vary with stacking sequences. This work thus demonstrates the importance of geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. To enable graphical visualization, the behavior of the four-bar mechanism is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). Finally, the component-laminate load-carrying capacity is estimated using the Tsai-Wu-Hahn failure criterion for various layups and the same criterion is used to predict the first-ply-failure and the mechanism as a whole.
35

Strichartz estimates and the nonlinear Schrödinger-type equations / Estimations de Strichartz et les équations non-linéaires de type Schrödinger sur les variétés

Dinh, Van Duong 10 July 2018 (has links)
Cette thèse est consacrée à l'étude des aspects linéaires et non-linéaires des équations de type Schrödinger [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] Quand $sigma = 2$, il s'agit de l'équation de Schrödinger bien connue dans de nombreux contextes physiques tels que la mécanique quantique, l'optique non-linéaire, la théorie des champs quantiques et la théorie de Hartree-Fock. Quand $sigma in (0,2) backslash {1}$, c'est l'équation Schrödinger fractionnaire, qui a été découverte par Laskin (voir par exemple cite{Laskin2000} et cite{Laskin2002}) en lien avec l'extension de l'intégrale de Feynman, des chemins quantiques de type brownien à ceux de Lévy. Cette équation apparaît également dans des modèles de vagues (voir par exemple cite{IonescuPusateri} et cite{Nguyen}). Quand $sigma = 1$, c'est l'équation des demi-ondes qui apparaît dans des modèles de vagues (voir cite{IonescuPusateri}) et dans l'effondrement gravitationnel (voir cite{ElgartSchlein}, cite{FrohlichLenzmann}). Quand $sigma = 4$, c'est l'équation Schrödinger du quatrième ordre ou biharmonique introduite par Karpman cite{Karpman} et par Karpman-Shagalov cite{KarpmanShagalov} pour prendre en compte le rôle de la dispersion du quatrième ordre dans la propagation d'un faisceau laser intense dans un milieu massif avec non-linéarité de Kerr. Cette thèse est divisée en deux parties. La première partie étudie les estimations de Strichartz pour des équations de type Schrödinger sur des variétés comprenant l'espace plat euclidien, les variétés compactes sans bord et les variétés asymptotiquement euclidiennes. Ces estimations de Strichartz sont utiles pour l'étude de l'équations dispersives non-linéaire à régularité basse. La seconde partie concerne l'étude des aspects non-linéaires tels que les caractères localement puis globalement bien posés sous l'espace d'énergie, ainsi que l'explosion de solutions peu régulières pour des équations non-linéaires de type Schrödinger. [...] / This dissertation is devoted to the study of linear and nonlinear aspects of the Schrödinger-type equations [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] When $sigma = 2$, it is the well-known Schrödinger equation arising in many physical contexts such as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When $sigma in (0,2) backslash {1}$, it is the fractional Schrödinger equation, which was discovered by Laskin (see e.g. cite{Laskin2000} and cite{Laskin2002}) owing to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This equation also appears in the water waves model (see e.g. cite{IonescuPusateri} and cite{Nguyen}). When $sigma = 1$, it is the half-wave equation which arises in water waves model (see cite{IonescuPusateri}) and in gravitational collapse (see cite{ElgartSchlein}, cite{FrohlichLenzmann}). When $sigma =4$, it is the fourth-order or biharmonic Schrödinger equation introduced by Karpman cite {Karpman} and by Karpman-Shagalov cite{KarpmanShagalov} taking into account the role of small fourth-order dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity. This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-type equations on manifolds including the flat Euclidean space, compact manifolds without boundary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions for nonlinear Schrödinger-type equations.[...]

Page generated in 0.0533 seconds