• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of the water budget on a semiarid watershed

Saplaco, Severo Rombaoa, January 1977 (has links) (PDF)
Thesis (Ph. D. - School of Renewable Natural Resources)--University of Arizona. / Includes bibliographical references.
2

Hydrologic characteristics of a semiarid watershed

Woolhiser, David, January 1959 (has links) (PDF)
Thesis (M.S. - Civil Engineering)--University of Arizona. / Bibliography: leaves 97-98.
3

The effect of urbanization on watershed runoff.

Foerster, Eugene Paul,1932- January 1972 (has links)
A study was undertaken to determine the effect of urbanization on the rainfall-runoff relationship of a semiarid region. A concentrated network of rain gages was installed on the urban Tucson Arroyo-Arroyo Chico Watershed located in the city of Tucson, Arizona. Rainfall data from this watershed were compared with that of the non-urban Atterbury Experimental Watershed located to the southeast of the city of Tucson in order to determine if there were significant differences in the runoff from these two watersheds. In addition, test plots were constructed by the researcher for the study of the effects of intensity of precipitation, season, antecedent moisture, and percent of impervious cover on the rainfall-runoff relationship. Data from the test plots were compared with that of the Tucson Arroyo-Arroyo Chico Watershed. A prediction model was developed for the Tucson Arroyo-Arroyo Chico Watershed. The feasibility of retaining urban runoff for more beneficial uses was investigated. It was determined that the runoff from the urban Tucson Arroyo- Arroyo Chico Watershed was 4.75 times greater per square unit of area than that from the non-urban Atterbury Experimental Watershed. Significant factors in the rainfall-runoff relationships of the test plot data were found to be intensity of precipitation and amount of impervious cover. Season was found not to be significant. Antecedent moisture was a significant factor in the analysis of variance of the data. However, it was not significant in the regression analysis. In the comparison of the test plot data and the data from the Tucson Arroyo-Arroyo Chico Watershed, it was found that intensity of precipitation was the predominant factor in the rainfall-runoff relationship. In plotting the effects of intensity of precipitation versus runoff, the resulting graph indicated an increasing effect of impervious cover and intensity of precipitation on runoff from the test plots. A regression model was developed from the data of the Tucson Arroyo-Arroyo Chico Watershed. The factors of average precipitation and intensity of precipitation accounted for 82 percent of the variation in the analysis. Of these two factors, intensity of precipitation accounted for 68 percent of the variation. Duration of precipitation and the antecedent moisture index did not significantly increase the correlation coefficient of the regression analysis when they were included. The projected runoff from the city of Tucson would amount to less than 10 percent of the present yearly use. The treatment necessary for the domestic use of urban runoff would be greater than the present cost of producing municipal water from well-sites. Recharging this water into the groundwater supply appears to be the most feasible method of utilizing urban runoff at this time.
4

Display and Manipulation of Inventory Data

Gale, R. D., Russel, J. W., Siverts, L. E. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / A stochastic model is presented for the prediction of sediment yield in a semi-arid watershed based on rainfall data and watershed characteristics. Random variables which lead to uncertainty in the model are rainfall amount, storm duration, runoff, and peak flow. Soil conservation service formulas are used to compute the runoff and peak flow components of the universal soil loss equation, and a transformation of random variables is used to obtain the distribution function of sediment yield from the joint distribution of rainfall amount and storm duration. Applications of the model are in the planning of reservoirs and dams where the effective lifetime of the facility may be evaluated in terms of storage capacity as well as the effects of land management of the watershed. In order to calibrate the model and to evaluate the uncertainties involved, experimental data from the Atterbury watershed near Tucson, Arizona were used.

Page generated in 0.044 seconds