• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reforma a vapor catal?tica do metano: Otimiza??o da produ??o e seletividade em hidrog?nio por absor??o in situ do CO2 produzido

Ces?rio, Moises R?molos 29 April 2013 (has links)
Made available in DSpace on 2014-12-17T15:42:20Z (GMT). No. of bitstreams: 1 MoisesRC_TESE.pdf: 5138295 bytes, checksum: 2244f5424aa2282bc24737aca40cf3d2 (MD5) Previous issue date: 2013-04-29 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 ?C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 ?C). This validates the concept of the sorption of CO2 together with methane steam reforming / T?picos de pesquisa relacionados ? energia e meio ambiente t?m crescido significativamente nos ?ltimos anos, com a necessidade de energia pr?pria como o hidrog?nio. Mais particularmente, in?meras pesquisas t?m sido focadas em hidrog?nio como vetor energ?tico. A maior parte de hidrog?nio ? atualmente obtida por reforma do metano ou hidrocarbonetos (vapor, seco, oxi ou auto reforma). Durante o processo de reforma a vapor do metano, a forma??o de CO2 indesej?vel (principal contribuinte ao efeito estufa) ? observada. Dessa forma, um material ?xido (absorbante) pode ser usado para capturar o CO2 gerado durante o processo e ao mesmo tempo deslocar o equil?brio da rea??o de deslocamento g?s-?gua no sentido termodin?mico mais favor?vel ? produ??o de hidrog?nio puro. O objetivo desse estudo consiste em desenvolver um material com dupla fun??o (catalisador/absorbante) na rea??o de reforma a vapor do metano. CaO ? bem conhecido como absorbante do CO2 devido ? sua elevada efici?ncia em rea??es de carbonata??o e f?cil regenera??o por interm?dio da calcina??o. No entanto, a cin?tica de carbonata??o decresce rapidamente em fun??o do tempo e ciclos de carbonata??o e calcina??o. Um aluminato de c?lcio (Ca12Al14O33) deve ser utilizado para evitar a sinteriza??o e aumentar a estabilidade de absorbantes de CaO durante v?rios ciclos. O n?quel, o catalisador industrial escolhido para a reforma a vapor do metano foi adicionado ao suporte em diferentes maneiras. Estes materiais bi-funcionais (absorbante/catalisador) em diferentes raz?es molares CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) foram preparados por diferentes m?todos de s?ntese, dentre eles, com destaque o m?todo de autocombust?o assistida por microondas (AAM). S?ntese, estrutura e desempenho catal?tico de Ni- CaO.Ca12Al14O33 sintetizado pelo novo m?todo (autocombust?o assistida por microondas) proposto neste trabalho n?o t?m sido reportado na literatura. Os resultados indicam que o tempo de captura de CO2 depende tanto do excesso de CaO quanto das condi??es de funcionamento (como, por exemplo, a temperatura e a raz?o H2O/CH4). Para ser eficiente na absor??o de CO2, a temperatura de reforma a vapor deve ser inferior a 700 ?C. Uma percentagem otimizada correspondente a 75% de CaO e uma raz?o (H2O/CH4 = 1) fornece os resultados mais prometedores uma vez que uma menor quantidade de ?gua evita uma competi??o entre a ?gua e CO2 para a forma??o de carbonato e hidr?xido. Se esta competi??o for mais efetiva (H2O/CH4 = 3) ter-se-ia uma menor quantidade de CaO dispon?vel para absor??o possivelmente devido ? forma??o de Ca(OH)2. Por isso, o tempo de captura foi maior (16h) para a raz?o H2O/CH4 = 1 do que H2O/CH4 = 3 (7h) usando como catalisador reacional aquele preparado por impregna??o do suporte obtido por AAM. Portanto, foi demonstrado que, com esses catalisadores, a absor??o de CO2 por CaO modifica o equil?brio da rea??o de deslocamento g?s?gua. Consequentemente, a reforma a vapor de CH4 ? otimizada, produzindo hidrog?nio puro, concentra??es desprez?veis de CO2 e CO durante o tempo de captura, mesmo a baixa temperatura (650 ? C). Isso confirma o conceito de absor??o in situ de CO2 durante a reforma a vapor do metano

Page generated in 0.0238 seconds