1 |
Stability theory and numerical analysis of non-autonomous dynamical systems.Stonier, D. J., mikewood@deakin.edu.au January 2003 (has links)
The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12].
Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete.
It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous
dynamical systems may be extended.
A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability.
Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied.
The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system.
The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.
|
2 |
Famílias Anosov: estabilidade estrutural, variedades invariantes, e entropía para sistemas dinâmicos não-estacionários / Anosov families: structural stability, Invariant manifolds and entropy for non-stationary dynamical sytemsAcevedo, Jeovanny de Jesus Muentes 24 November 2017 (has links)
As famílias Anosov foram introduzidas por P. Arnoux e A. Fisher, motivados por generalizar a noção de difeomorfismo de Anosov. A grosso modo, as famílias Anosov são sequências de difeomorfismos (fi)i∈Z definidos em uma sequencia de variedades Riemannianas compactas (Mi)i∈Z, em que fi: Mi ->Mi+1 para todo i ∈ Z, tal que a composição fi+no· · ·ofi, para n >=1, tem comportamento assintoticamente hiperbólico. Esta noção é conhecida como um sistema dinâmico não-estacionário ou um sistema dinâmico não-autônomo. Sejam M a união disjunta de cada Mi, para i ∈ Z, e Fm(M) o conjunto consistente das famílias de difeomorfismos (fi)i∈Z de classe Cm definidos na sequência (Mi)i∈Z. O propósito principal deste trabalho é mostrar algumas propriedades das famílias Anosov. Em particular, mostraremos que o conjunto destas famílias é aberto em Fm(M), em que Fm(M) é munido da topologia forte (ou topologia Whitney); a estabilidade estrutural de certa classe de famílias Anosov, considerando conjugações topológicas uniformes; e várias versões para os Teoremas de variedades estáveis e instáveis. Os resultados que serão apresentados aqui generalizam alguns outros resultados obtidos em Sistemas Dinâmicos Aleatórios, os quais serão mencionados ao longo do trabalho. Além do anterior, será introduzida a entropia topológica para elementos em Fm(M) e mostraremos algumas das suas propriedades. Provaremos que esta entropia é contínua em Fm(M) munido da topologia forte. Porém, ela é descontínua em cada elemento de Fm(M) munido da topologia produto. Também apresentaremos um resultado que pode ser uma ferramenta de muita utilidade no estudo da continuidade da entropia topológica de difeomorfismos definidos em variedades compactas. Finalizaremos o trabalho dando uma lista de problemas que surgiram ao longo desta pesquisa e que serão analisados em um trabalho futuro. / Anosov families were introduced by P. Arnoux and A. Fisher, motivated by generalizing the notion of Anosov dieomorphisms. Roughly, Anosov families are sequences of dieomorphisms (fi)i∈Z dened on a sequence of compact Riemannian manifolds (Mi)i∈Z, where fi: Mi -> Mi+1 for all i ∈ Z, such that the composition fi+n o · · · o fi, for n >=1, has asymptotically hyperbolic behavior. This notion is known as a non-stationary dynamical system or a non-autonomous dynamical system. Let M be the disjoint union of each Mi, for each i ∈ Z, and Fm(M) the set consisting of families of Cm-dieomorphisms (fi)i∈Z dened on the sequence (Mi)i∈Z. The main goal of this work is to explore some properties of Anosov families. In particular, we will show that the set consisting of these families is open in Fm(M), where Fm(M) is endowed with the strong topology (or Whitney topology); the structural stability of a certain class of Anosov families, considering uniform topological conjugacies; and some versions of stable and unstable manifold theorems. The results that will be presented here generalize some results obtained in Random Dynamical Systems, which will be mentioned throughout the work. In addition to the above mentioned theorems, the topological entropy for elements in Fm(M) will be introduced, and we will show some of its properties. We will prove that this entropy is continuous on Fm(M) endowed with strong topology. However, it is discontinuous at each element of Fm(M) endowed with the product topology. We will also present a result that can be a very useful tool in the study of the continuity of the topological entropy of dieomorphisms dened on compact manifolds. We will nish the work by giving a list of problems that have arisen throughout this research and that will be analyzed in a future work.
|
3 |
Famílias Anosov: estabilidade estrutural, variedades invariantes, e entropía para sistemas dinâmicos não-estacionários / Anosov families: structural stability, Invariant manifolds and entropy for non-stationary dynamical sytemsJeovanny de Jesus Muentes Acevedo 24 November 2017 (has links)
As famílias Anosov foram introduzidas por P. Arnoux e A. Fisher, motivados por generalizar a noção de difeomorfismo de Anosov. A grosso modo, as famílias Anosov são sequências de difeomorfismos (fi)i∈Z definidos em uma sequencia de variedades Riemannianas compactas (Mi)i∈Z, em que fi: Mi ->Mi+1 para todo i ∈ Z, tal que a composição fi+no· · ·ofi, para n >=1, tem comportamento assintoticamente hiperbólico. Esta noção é conhecida como um sistema dinâmico não-estacionário ou um sistema dinâmico não-autônomo. Sejam M a união disjunta de cada Mi, para i ∈ Z, e Fm(M) o conjunto consistente das famílias de difeomorfismos (fi)i∈Z de classe Cm definidos na sequência (Mi)i∈Z. O propósito principal deste trabalho é mostrar algumas propriedades das famílias Anosov. Em particular, mostraremos que o conjunto destas famílias é aberto em Fm(M), em que Fm(M) é munido da topologia forte (ou topologia Whitney); a estabilidade estrutural de certa classe de famílias Anosov, considerando conjugações topológicas uniformes; e várias versões para os Teoremas de variedades estáveis e instáveis. Os resultados que serão apresentados aqui generalizam alguns outros resultados obtidos em Sistemas Dinâmicos Aleatórios, os quais serão mencionados ao longo do trabalho. Além do anterior, será introduzida a entropia topológica para elementos em Fm(M) e mostraremos algumas das suas propriedades. Provaremos que esta entropia é contínua em Fm(M) munido da topologia forte. Porém, ela é descontínua em cada elemento de Fm(M) munido da topologia produto. Também apresentaremos um resultado que pode ser uma ferramenta de muita utilidade no estudo da continuidade da entropia topológica de difeomorfismos definidos em variedades compactas. Finalizaremos o trabalho dando uma lista de problemas que surgiram ao longo desta pesquisa e que serão analisados em um trabalho futuro. / Anosov families were introduced by P. Arnoux and A. Fisher, motivated by generalizing the notion of Anosov dieomorphisms. Roughly, Anosov families are sequences of dieomorphisms (fi)i∈Z dened on a sequence of compact Riemannian manifolds (Mi)i∈Z, where fi: Mi -> Mi+1 for all i ∈ Z, such that the composition fi+n o · · · o fi, for n >=1, has asymptotically hyperbolic behavior. This notion is known as a non-stationary dynamical system or a non-autonomous dynamical system. Let M be the disjoint union of each Mi, for each i ∈ Z, and Fm(M) the set consisting of families of Cm-dieomorphisms (fi)i∈Z dened on the sequence (Mi)i∈Z. The main goal of this work is to explore some properties of Anosov families. In particular, we will show that the set consisting of these families is open in Fm(M), where Fm(M) is endowed with the strong topology (or Whitney topology); the structural stability of a certain class of Anosov families, considering uniform topological conjugacies; and some versions of stable and unstable manifold theorems. The results that will be presented here generalize some results obtained in Random Dynamical Systems, which will be mentioned throughout the work. In addition to the above mentioned theorems, the topological entropy for elements in Fm(M) will be introduced, and we will show some of its properties. We will prove that this entropy is continuous on Fm(M) endowed with strong topology. However, it is discontinuous at each element of Fm(M) endowed with the product topology. We will also present a result that can be a very useful tool in the study of the continuity of the topological entropy of dieomorphisms dened on compact manifolds. We will nish the work by giving a list of problems that have arisen throughout this research and that will be analyzed in a future work.
|
4 |
Analyse mathématique d’un système dynamique/réaction-diffusion modélisant la distribution des bactéries résistantes aux antibiotiques dans les rivières / Mathematical analysis of a dynamical/reaction-diffusion system modelling the distribution of antibiotic resistant bacteria in riversMostefaoui, Imene Meriem 03 October 2014 (has links)
L'objectif de cette thèse est l'étude qualitative de certains modèles de la dynamique et la distribution des bactéries dans une rivière. Il s'agit de la stabilité des états stationnaires et l'existence des solutions périodiques. Nous considérons, dans la première partie de la thèse, un système d'équations différentielles ordinaires qui modélise les interactions et la dynamique de quatre espèces de bactéries dans une rivière. Nous avons étudié le comportement asymptotique des états stationnaires. L'étude de la stabilité des états stationnaires est essentiellement faite par la construction d'une fonction de Lyapunov combinée avec le principe d'invariance de LaSalle. D'autre part, l'existence des solutions périodiques est démontrée en utilisant le théorème de continuation de Mawhin. La deuxième partie de la thèse est consacrée à l'étude d'un système de convection-diffusion non-autonome. Ce modèle tient compte du transport des bactéries. Nous étudions l'analyse qualitative des solutions, nous déterminons l'ensemble limite du système et nous démontrons l'existence des états stationnaires positifs. L'étude de l'existence des états stationnaires (les seuls qu'il soit possible d'obtenir) est basée sur le théorème de Leray-Schauder. / The objective of this thesis is the qualitative study of some models of the dynamic and the distribution of bacteria in a river. We are interested in the stability of equilibria and the existence of periodic solutions. The thesis can be divided into two parts; the first part is concerned with a mathematical analysis of a system of differential equations modelling the dynamics and the interactions of four species of bacteria in a river. The asymptotic behavior of equilibria is established. The stability study of equilibrium states is mainly done by construction of Lyapunov functions combined with LaSalle's invariance principle. On the other hand, the existence of periodic solutions is proved under certain conditions using the continuation theorem of Mawhin. In the second part of this thesis, we propose a non-autonomous convection-reaction diffusion system with nonlinear reaction source functions. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. Our main contributions are : (i) the determination of the limit set of the system; it is shown that it is reduced to the solutions of the associated elliptic system; (ii) sufficient conditions for the existence of a positive solution of the associated elliptic system based on the Leray Schauder's degree theory.
|
Page generated in 0.0947 seconds