• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kerr Black Holes And Its Generalizations

Cebeci, Hakan 01 October 2003 (has links) (PDF)
The scalar tensor theory of gravitation is constructed in D dimensions in all possible geometries of spacetime. In Riemannian geometry, theory of gravitation involves a spacetime metric g with a torsion-free, metric compatible connection structure. If the geometry is non-Riemannian, then the gauge theory of gravitation can be constructed with a spacetime metric g and a connection structure with torsion. In non-Riemannian theory, connections may be metric compatible or non-metric compatible. It is shown that theory of gravitation which involves non-metric compatible connection and torsion, can be rewritten in terms of torsion-free theory. It is also shown that scalar tensor theory can be reformulated in Einstein frame by applying a conformal transformation. By adding an antisymmetric axion field, the axi-dilaton theory is studied in Riemannian and non-Riemannian geometries. Motion of massive test particles is examined in all these geometries. The static, spherically symmetric and stationary, Kerr-type axially symmetric solutions of the scalar tensor and axi-dilaton theories are presented. As an application, the geodesic elliptical orbits based on a torsion-free connection and the autoparallel orbits based on a connection with a torsion, are examined in Kerr Brans-Dicke geometry. Perihelion shift of the elliptical orbit is calculated in both cases and the results are compared.

Page generated in 0.051 seconds