• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reibung am Arbeitskolben von Schrägscheibenmaschinen im Langsamlauf /

Breuer, David. January 2007 (has links)
Techn. Hochsch., Diss.--Aachen, 2006.
2

Optimization of the tribological contact of valve plate and cylinder block within axial piston machines

Geffroy, Stefan, Bauer, Niklas, Mielke, Tobias, Wegner, Stephan, Gels, Stefan, Murrenhoff, Hubertus, Schmitz, Katharina 25 June 2020 (has links)
In this paper, a simulation study is carried out for the development of concepts to optimize the tribological contact of valve plate and cylinder block in an axial piston machine in swash plate design. The valve plate/cylinder block contact is one of the three essential tribological contacts in axial piston machines. In a research project at the Institute for Fluid Power Drives and Systems (ifas), this contact is investigated by a specifically designed simulation tool. In addition, a test rig exists for the experimental investigation. With the results of simulation and experiment, it was shown before that the cylinder block is tilting to the high pressure side. Due to this movement, the gap height is not constant. In the area of minimum gap height, not only the fluid friction, but also the danger of solid body friction increases. Because of the higher friction losses in the area of minimum gap height, the temperature increase reduces the lifetime of the leaded coatings. In this paper, the results of the measurements as well as the simulation model are briefly summarized. It is followed by a simulation study of different possibilities to raise the gap height. Based on this pre-study, a first concept for the optimization of the tribological contact valve plate/cylinder block is presented and its applicability is discussed.

Page generated in 0.041 seconds