• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enantioselective rhodium-catalysed addition of allylboron reagents to cyclic imines and enantioselective nickel-catalysed Michael additions of 2-acetylazaarenes to nitroalkenes

Chotsaeng, Nawasit January 2016 (has links)
Rhodium-catalysed enantioselective allylation reaction of imines in the presence of chiral diene ligands has been investigated. Under the optimised conditions, cyclic imines provided homoallylic amines in high yield and excellent enantioselectivities. The reaction most likely proceeds via allylrhodium(I) intermediates, and represents the first rhodium-catalysed enantioselective nucleophilic allylation of π-electrophiles with allylboron compounds. Furthermore, the allylations display a strong preference for carbon–carbon bond formation at the more substituted terminus of the allyl fragment of the allyltrifluoroborate. To demonstrate the utility of the allylation products, representative manipulations were conducted. Enantioselective Nickel-Catalysed Michael Additions of 2-Acetylazaarenes to Nitroalkenes An enantioselective Michael addition of acylazaarenes with α-substituted β-nitroacrylates in the presence of a chiral Ni(II)–bis(oxazoline) complexes has been developed. A range of azaaryl nucleophiles were shown to react with a variety of nitroalkenes to construct highly functionalised Michael addition products which contain a stereogenic all-carbon quaternary stereocentre with moderate to high yields and enantioselectivities. A possible mechanism for this reaction has been proposed.

Page generated in 0.027 seconds