• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars

Achilles, C. N., Downs, R. T., Ming, D. W., Rampe, E. B., Morris, R. V., Treiman, A. H., Morrison, S. M., Blake, D. F., Vaniman, D. T., Ewing, R. C., Chipera, S. J., Yen, A. S., Bristow, T. F., Ehlmann, B. L., Gellert, R., Hazen, R. M., Fendrich, K. V., Craig, P. I., Grotzinger, J. P., Des Marais, D. J., Farmer, J. D., Sarrazin, P. C., Morookian, J. M. 11 1900 (has links)
The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the <150m size fraction of the Namib dune at a location called Gobabeb. Gobabeb is dominated by basaltic minerals. Plagioclase, Fo56 olivine, and two Ca-Mg-Fe pyroxenes account for the majority of crystalline phases along with minor magnetite, quartz, hematite, and anhydrite. In addition to the crystalline phases, a minimum similar to 42wt % of the Gobabeb sample is X-ray amorphous. Mineralogical analysis of the Gobabeb data set provides insights into the origin(s) and geologic history of the dune material and offers an important opportunity for ground truth of orbital observations. CheMin's analysis of the mineralogy and phase chemistry of modern and ancient Gale crater dune fields, together with other measurements by Curiosity's science payload, provides new insights into present and past eolian processes on Mars.
2

Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars

Johnson, Jeffrey R., Achilles, Cherie, Bell, James F., Bender, Steve, Cloutis, Edward, Ehlmann, Bethany, Fraeman, Abigail, Gasnault, Olivier, Hamilton, Victoria E., Le Mouélic, Stéphane, Maurice, Sylvestre, Pinet, Patrick, Thompson, Lucy, Wellington, Danika, Wiens, Roger C. 12 1900 (has links)
As part of the Bagnold Dune campaign conducted by Mars Science Laboratory rover Curiosity, visible/near-infrared reflectance spectra of dune sands were acquired using Mast Camera (Mastcam) multispectral imaging (445-1013nm) and Chemistry and Camera (ChemCam) passive point spectroscopy (400-840nm). By comparing spectra from pristine and rover-disturbed ripple crests and troughs within the dune field, and through analysis of sieved grain size fractions, constraints on mineral segregation from grain sorting could be determined. In general, the dune areas exhibited low relative reflectance, a weak similar to 530nm absorption band, an absorption band near 620nm, and a spectral downturn after similar to 685nm consistent with olivine-bearing sands. The finest grain size fractions occurred within ripple troughs and in the subsurface and typically exhibited the strongest similar to 530nm bands, highest relative reflectances, and weakest red/near-infrared ratios, consistent with a combination of crystalline and amorphous ferric materials. Coarser-grained samples were the darkest and bluest and exhibited weaker similar to 530nm bands, lower relative reflectances, and stronger downturns in the near-infrared, consistent with greater proportions of mafic minerals such as olivine and pyroxene. These grains were typically segregated along ripple crests and among the upper surfaces of grain flows in disturbed sands. Sieved dune sands exhibited progressive decreases in reflectance with increasing grain size, as observed in laboratory spectra of olivine size separates. The continuum of spectral features observed between the coarse- and fine-grained dune sands suggests that mafic grains, ferric materials, and air fall dust mix in variable proportions depending on aeolian activity and grain sorting.

Page generated in 0.0293 seconds