• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGN, ANALYSIS, AND IMPLEMENTATION OF THE POWER TRAIN OF AN ELECTRIC RACE CAR

Ayush Bhargava (18429309) 11 June 2024 (has links)
<p dir="ltr">The automotive industry has witnessed a significant transformation in recent years, largely driven by the emergence of electric powertrains. These systems offer a cleaner and more efficient alternative to traditional internal combustion engines, marking a pivotal shift towards sustainability in the transportation sector. At the heart of electric vehicles (EVs) lies the powertrain, a complex assembly of components tasked with converting electrical energy into mechanical power to propel the vehicle. In the context of electric race cars, the design and optimization of the powertrain are of utmost importance to achieve high performance on the track. The powertrain typically consists of four major components: the motor, inverter, battery, and gearbox. Each of these components plays a critical role in ensuring the efficient conversion and utilization of electrical energy to drive the vehicle forward. The process of designing an electric race car powertrain begins with a thorough understanding and explanation of each component's function and contribution to overall performance. This foundational understanding serves as the basis for subsequent analysis and optimization efforts. Central to the design process is the selection and configuration of the motor and battery, two key components that heavily influence the vehicle's performance characteristics. To facilitate this decision-making process, engineers leverage specialized software tools such as OptimumLap, MATLAB, and Simulink. OptimumLap allows engineers to input relevant parameters of the race car, such as its drag coefficient and frontal area, to gain insights into its aerodynamic performance. By conducting simulations on specific race tracks, such as the Adelaide circuit, engineers can generate valuable data representing the vehicle's performance in terms of lap times and speed. MATLAB's Grabit tool is then utilized to extract velocity data from the simulation results, providing crucial input for further analysis. This data is used to create a comprehensive table of values representing the vehicle's velocity profile under different conditions. Finally, engineers develop a Simulink model to simulate the operation of the electric powertrain under various scenarios. This model allows for the extraction of critical performance metrics and parameters, enabling engineers to optimize the motor and battery configuration to meet the specific requirements and constraints of the race car.</p>

Page generated in 0.0502 seconds