Spelling suggestions: "subject:"forskningsteknik"" "subject:"beräkningstid""
1 |
Thermal Initiation of Energetic Materials Caused by Hot Fragments / Termisk initiering av energetiska material orsakad av heta fragmentGhebreamlak, Sirak January 2022 (has links)
The cause of unintentional initiations of energetic materials is an important area of study due to the risks that comes with storing energetic materials such as high explosives. The current models used to simulate the process of heating energetic materials by a hot metal fragment do not give reliable predictions. The objective of this thesis is to study the current models in order to get a better understanding of how to improve the accuracy of the simulations. The heat transfer in the fragment and energetic material is modeled using the heat equation and the reaction rates in the chemical decomposition of the energetic material are modeled using Arrhenius equations. This study shows the importance of accurately implementing the contact area and heat transfer coefficient between the fragment and the energetic material. The thermal conductivity has a significantly smaller affect on the initiation time compared to the heat transfer coefficient. Furthermore, the dimensions of the fragment affect the resulting simulations greatly, while the dimensions of the energetic material only does so for sufficiently small dimensions. / Orsaken till oavsiktliga initieringar av energetiska material är ett viktigt studieområde på grund av riskerna som följer med att lagra energiskt material, så som sprängämnen. De nuvarande modellerna som används för att simulera uppvärmningsprocessen av energetiska material med ett hett metallfragment ger inte tillförlitliga förutsägelser. Syftet med denna uppsats är att studera de nuvarande modellerna för att få en bättre förståelse för hur man kan förbättra noggrannheten i simuleringarna. Värmeöverföringen i fragmentet och det energetiska materialet modelleras med hjälp av värmeledningsekvationen och reaktionshastigheterna i den kemiska nedbrytningen av det energetiska materialet modelleras med hjälp av Arrhenius-ekvationer. Denna studie visar vikten av att korrekt implementera kontaktytan och värmeöverföringskoefficient mellan fragmentet och det energetiska materialet. Den termiska konduktiviteten har en betydligt mindre effekt på initieringstiden jämfört med värmeöverförings- koefficienten. Vidare så påverkar fragmentets dimensioner de resulterande simuleringarna i hög grad, medan dimensionerna av det energetiska materialet gör så endast för tillräckligt små dimensioner.
|
2 |
An Arbitrary Lagrangian-Eulerian Finite Element Method for Shock Wave Propagation: Validating Simulations of Underwater Explosions / En finit elementmetod med ALE för stötvågsutbredning: validering av simulerade undervattensdetonationerSandström, Sebastian January 2021 (has links)
Underwater explosions are often modeled with Arbitrary Lagrangian-Eulerian (ALE) Finite Element Methods. The objective of this thesis is to validate the simulation method, with respect to the propagating shock wave. A two-dimensional axisymmetric model of a spherical TNT charge submerged in water is simulated using LS-DYNA. The explosive is modeled with the Burn Fraction technique and the Jones-Wilkins-Lee equation of state. Water is modeled as a non-viscous fluid, with the Grüneisen equation of state. The convergence for different mesh resolutions, the effect of different advection methods, and varied constants in the artificial viscosity are examined. Generally, the simulations agree well with empirical results, but the maximum pressure diminishes more rapidly with distance compared to experiments. The excessive dampening is most notable in the early stages of the propagation. Also, unexpected oscillations are observed near the discontinuity. The choice of advection scheme and constants in the artificial viscosity do not resolve the issues suggesting that other numerical techniques for treating the discontinuity should be considered. / Undervattensexplosioner simuleras ofta med ALE-baserade finita elementmetoder. Detta examensarbete avser att validera simuleringsmetoden med hänsyn till stötvågens utbredning i vattnet. En tvådimensionell axisymmetrisk modell av en sfärisk TNT-laddning nedsänkt i vatten simuleras i LS-DYNA. Laddningen modelleras med hjälp av brinnfraktioner och Jones-Wilkins-Lee tillståndsekvation. Vattnet modelleras som en inviskös fluid tillsammans med Grüneisens tillståndsekvation. Nätkonvergens, val av advektionsmetod och ändring av konstanter i den artificiella viskositeten studeras. Övergripande resultat stämmer väl överens med empirisk data, men stötvågens topptryck avtar fortare än väntat. Denna dämpning är tydligast i utredningens tidiga skeden. Dessutom observeras oväntade oscillationer kring stötvågens diskontinuerliga tryckprofil. Val av advektionsmetod och konstanter tillhörande artificiella viskositeten verkar ha liten betydelse för resultaten. En alternativ numerisk metod för behandling av stötvågens diskontinuitet bör implementeras.
|
3 |
Evaluation, adaption and implementations of Perfectly Matched Layers in COMSOL Multiphysics / Utvärdering, adaption och implementationer på absorberande våglager i COMSOL MultiphysicsErlandsson, Simon January 2020 (has links)
Perfectly matched layer (PML) is a commonly used method of absorbing waves at a computational boundary for partial differential equation (PDE) problems. In this thesis, methods for improving the usability of implementations in Comsol Multiphysics is addressed. The study looks at complex coordinate stretching PMLs in the context of Helmholtz equation using the finite element method (FEM). For a PML to work it has to be set up properly with parameters that takes into account the properties of the problem. It is not always straight forward. Some theory behind PMLs is presented and experimentation on PML properties performed. Methods for PML optimization and adaption is presented. Currently, the way PMLs is applied in COMSOL Multiphysics requires the user to perform many tasks; setting up a geometry, meshing and choosing a suitable complex coordinate stretching. Using a so-called extra-dimension implementation it is possible to attach PMLs as boundary conditions in COMSOL Multiphysics. This simplifies for the user since the geometry and mesh is handled by the software. / Perfectly matched layer (PML) är en metod som ofta används för vågabsorbering vid randen för problem med partiella differentialekvationer (PDE). I det här examensarbetet presenteras metoder som förenklar användingen av PMLer i COMSOL Multiphysics. Studien kollar på PMLer baserade på komplex-koordinatsträckning med fokus på Helmholtz ekvation och finita elementmetoden (FEM). För att en PML ska fungera måste den sättas upp på rätt sätt med parametrar anpassade efter det givna problemet. Att göra detta är inte alltid enkelt. Teori presenteras och experiment på PMLer görs. Flera metoder för optimisering och adaption av PMLer presenteras. I nuläget kräver appliceringen av PMLer i COMSOL Multiphysics att användaren sätter upp en geometri, ett beräkningsnät och väljer den komplexa koordinatsträckningen. Genom att använda COMSOLs implementation av extra dimensioner är det möjligt att applicera PMLer som randvilkor. I en sådan implementation kan geometri och beräkningsnät skötas av mjukvaran vilket underlättar för användaren.
|
Page generated in 0.0736 seconds