Spelling suggestions: "subject:"berezinskii""
11 |
Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints / Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operatorsRouby, Ophélie 29 November 2016 (has links)
On s'intéresse à la théorie spectrale d'opérateurs semi-classiques non auto-adjoints en dimension un et plus précisément aux développements asymptotiques des valeurs propres. Ces derniers font intervenir des objets géométriques issus de la mécanique classique dans l'espace des phases complexifié et correspondent à une généralisation des conditions de quantification de Bohr-Sommerfeld au cadre non auto-adjoint. Plus précisément, dans un premier temps, on étudie le spectre de perturbations non auto-adjointes d'opérateurs pseudo-différentiels auto-adjoints en dimension un à l'aide de techniques d'analyse microlocale analytique et en corollaire, on établit que pour des perturbations PT-symétriques d'opérateurs auto-adjoints, le spectre est réel. Ensuite, on présente des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du plan complexe auto-adjoints. Dans un second temps, on s'intéresse aux différentes quantifications du tore et plus précisément à la quantification de Berezin-Toeplitz du tore, à la quantification de Weyl classique du tore et à la quantification de Weyl complexe du tore. On établit des liens entre ces différentes quantifications notamment grâce à la transformée de Bargmann, puis à l'aide de simulations numériques, on met en évidence une conjecture sur des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du tore auto-adjoints. / We interest ourselves in the spectral theory of non self-adjoint semi-classical operators in dimension one and in asymptotic expansions of eigenvalues. These expansions are written in terms of geometrical objects in a complex phase space coming from classical mechanics and correspond to a generalization of Bohr-Sommerfeld quantization conditions in the non self-adjoint case. First, we study non self-adjoint perturbations of self-adjoint pseudo-differential operators in dimension one by using techniques of analytic microlocal analysis. As a corollary, we establish for PT-symmetric perturbations of self-adjoint operators, that the spectrum is real. Then we show Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the complex plane. In the second part, we look into quantizations of the torus, namely the Berezin-Toeplitz, the classical Weyl and the complex Weyl quantizations of the torus. We establish links between these different quantizations using Bargmann transform. We propose a conjecture, supported by numerical simulations, on Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the torus.
|
12 |
Sous-espaces hilbertiens, sous-dualités et applicationsMARY, Xavier 18 December 2003 (has links) (PDF)
L'étude des fonctions de deux variables et des opérateurs intégraux associés, ou l'étude directe des noyaux au sens de L. Schwartz (définis comme opérateurs faiblement continus du dual topologique d'un espace vectoriel localement convexe dans lui même), est depuis plus d'un demi-siècle une branche des mathématiques en pleine expansion notamment dans le domaine des distributions, des équations différentielles ou dans le domaine des probabilités avec l'étude des mesures gaussiennes et<br />des processus gaussiens.<br /><br />Les travaux de Moore, Bergman et Aronszajn ont notamment abouti au résultat fondamental suivant qui concerne les noyaux positifs : il est toujours possible de construire un sous-espace préhilbertien à partir d'un noyau positif et, moyennant quelques hypothèses (faibles) supplémentaires, de compléter fonctionnellement cet espace afin d'obtenir alors un espace de Hilbert. Cet espace possède alors la propriété d'être continûment inclus dans l'espace vectoriel localement convexe de départ.<br />Il existe donc une relation forte entre noyaux positifs et espaces hilbertiens. Dans cette thèse, nous nous sommes posés le problème suivant : que se passe t'il si l'on lève l'hypothèse<br />de positivité ? D'hermicité ?<br /><br />Dans cette perspective nous considérons une seconde approche qui consiste à travailler directement sur des espaces vectoriels plutôt que sur les noyaux.<br />Précisément, adoptant une démarche classique en mathématiques, nous étudions les propriétés d'une classe d'espaces vérifiant des hypothèses additionnelles. Partant des espaces de Hilbert continûment inclus dans un espace localement convexe donné, cette approche a conduit aux espaces de Hilbert à noyau reproduisant de N. Aronszajn puis aux sous-espaces hilbertiens de L. Schwartz. Cette théorie est présentée dans la première partie de la thèse, le résultat majeur de cette théorie étant sans doute l'équivalence entre sous-espaces hilbertiens<br />et noyaux positifs, résumé par la phrase suivante :<br /><br />``Il existe une bijection entre sous-espaces hibertiens et noyaux positifs.''<br /><br />Le principal apport à la théorie existante est l'utilisation intensive de systèmes en dualité et de formes bilinéaires (et pas uniquement sesquilinéaires). De manière surprenante,<br />cela conduit à une certaine perte de symétrie qui porte les germes de la théorie des sous-dualités.<br /><br />Dans une seconde partie nous suivons encore les travaux de L. Schwartz et étudions la théorie moins connue des sous-espaces de Krein (ou sous-espaces hermitiens).<br />Les espaces de Krein ressemblent aux espaces de Hilbert mais sont munis d'un produit scalaire qui n'est plus nécessairement positif. Les sous-espaces de Krein constituent donc une première généralisation des sous-espaces hilbertiens. Un des principaux intérêt de l'étude de tels espaces réside en la disparition de l'équivalence fondamentale entre les notions de sous-espaces et de noyaux, même si une relation étroite subsiste. Nous étudions plus particulièrement les similitudes et les différences entre ces deux différentes théories, que nous retrouverons dans la théorie des sous-dualités.<br /><br />La troisième partie généralise la perte de symétrie évoquée dans le chapitre 1. Nous développons les bases d'une théorie non plus basée sur une structure hilbertienne, mais sur une certaine dualité.<br />Nous développons ainsi le concept de sous-dualité d'un espace vectoriel localement convexe (ou d'un système dual) et de son noyau associé.<br />Une sous-dualité est définie par un système de deux espaces en dualité vérifiant des conditions d'inclusion algébrique ou<br />topologique. Plus précisément :<br />un système dual $(E,F)$ est une sous-dualité d'un espace localement convexe $\cE$ (ou plus généralement d'un système dual $(\cE,\cF)$) si $E$ et $F$ sont faiblement continûment inclus dans $\cE$.<br />Dans ce cas, il est possible d'associer à cette sous-dualité un unique noyau d'image dense dans la sous-dualité. Nous étudions également l'effet d'une application linéaire faiblement continue. Il devient alors possible (moyennant une relation d'équivalence) de munir l'ensemble des sous-dualités d'une structure d'espace vectoriel qui le rend isomorphe algébriquement à l'espace vectoriels des noyaux. Nous exhibons ensuite un représentant canonique de ces classes d'équivalences, ce qui permet d'établir une bijection entre sous-dualités canoniques et noyaux.<br /><br />Une quatrième et dernière partie propose quelques applications. Le premier champ d'application possible est une généralisation du lien entre sous-espaces hilbertiens et mesures gaussiennes. Le second est l'étude d'opérateurs particuliers, les opérateurs dans les sous-dualités d'évaluation (sous-dualités de $\KK^(\Omega)$) et les opérateurs différentiels.
|
13 |
Bi-fractional transforms in phase spaceAgyo, Sanfo David January 2016 (has links)
The displacement operator is related to the displaced parity operator through a two dimensional Fourier transform. Both operators are important operators in phase space and the trace of both with respect to the density operator gives the Wigner functions (displaced parity operator) and Weyl functions (displacement operator). The generalisation of the parity-displacement operator relationship considered here is called the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional displacement operators lead to the novel concept of bi-fractional coherent states. The generalisation from Fourier transform to fractional Fourier transform can be applied to other phase space functions. The case of the Wigner-Weyl function is considered and a generalisation is given, which is called the bi-fractional Wigner functions, H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to give the bi-fractional Q−functions and bi-fractional P−functions respectively. The generalisation is likewise applied to the Moyal star product and Berezin formalism for products of non-commutating operators. These are called the bi-fractional Moyal star product and bi-fractional Berezin formalism. Finally, analysis, applications and implications of these bi-fractional transforms to the Heisenberg uncertainty principle, photon statistics and future applications are discussed.
|
14 |
Bi-fractional transforms in phase spaceAgyo, Sanfo D. January 2016 (has links)
The displacement operator is related to the displaced parity operator through a two dimensional
Fourier transform. Both operators are important operators in phase space
and the trace of both with respect to the density operator gives the Wigner functions
(displaced parity operator) and Weyl functions (displacement operator). The generalisation
of the parity-displacement operator relationship considered here is called
the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional
displacement operators lead to the novel concept of bi-fractional coherent states.
The generalisation from Fourier transform to fractional Fourier transform can be
applied to other phase space functions. The case of the Wigner-Weyl function is considered
and a generalisation is given, which is called the bi-fractional Wigner functions,
H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to
give the bi-fractional Q−functions and bi-fractional P−functions respectively. The
generalisation is likewise applied to the Moyal star product and Berezin formalism for
products of non-commutating operators. These are called the bi-fractional Moyal star
product and bi-fractional Berezin formalism.
Finally, analysis, applications and implications of these bi-fractional transforms
to the Heisenberg uncertainty principle, photon statistics and future applications are
discussed.
|
15 |
The analysis of Toeplitz operators, commutative Toeplitz algebras and applications to heat kernel constructions. / The analysis of Toeplitz operators, commutative Toeplitz algebras and applications to heat kernel constructions.Issa, Hassan 19 June 2012 (has links)
No description available.
|
Page generated in 0.0397 seconds