• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of Members of the Phosducin Gene Family in Protein Translation and Folding

Sono-Koree, Nana 12 March 2010 (has links)
G proteins regulate various physiological processes by way of transducing a wide variety of signals ranging from hormonal to sensory stimuli. Malfunctions in G protein signaling lead to numerous diseases. G protein signaling begins with binding of a ligand to a G protein-coupled receptor resulting in a conformational change that leads to the exchange of a GDP for a GTP on G α. The GTP bound α subunit dissociates for its stable Gβγ dimer partner. G α-GTP and Gβγ control the activity of effector enzymes and ion channels that ultimately orchestrate the cellular response to stimulus. Current reports have shown phosducin-like protein (PhLP1) as a co-chaperone with the chaperonin-containing tailless complex polypeptide-1 (CCT) in the assembly of Gβγ dimer. However, the studies did not address the role of PhLP1 and CCT in the translation and eventual assembly of Gβγ dimer. The data presented in Chapter 2 shows a co-translational assembly of Gβγ dimer regulated by PhLP1 and CCT. Chapter 3 discusses the role of PhLP2A and PhLP3 in CCT-mediated assembly of actin and tubulin in mammalian cells. PhLP2 and PhLP3 are members of the phosducin gene family that interact with CCT. Several studies in yeast suggest that PhLP2 promotes CCT-dependent β-actin folding while PhLP3 enhances β-tubulin folding. However, human PhLP2 has been shown to inhibit β-actin folding, indicating that PhLP2 and possibly PhLP3 have very different functions in humans than they do in yeast. As a result, this study investigates in depth the role of PhLP2 and PhLP3 in CCT-dependent β-actin and β-tubulin folding in human cells.

Page generated in 0.0356 seconds