Spelling suggestions: "subject:"beyond then standard model"" "subject:"beyond them standard model""
31 |
Search for dark matter produced in association with a Z boson in the ATLAS detector at the Large Hadron ColliderMcLean, Kayla Dawn 01 March 2021 (has links)
This dissertation presents a search for dark matter particles produced in association with a Z boson in proton-proton collisions. The dataset consists of 139 fb^{-1} of collision events with centre-of-mass energy of 13 TeV, and was collected by the ATLAS detector from 2015-2018 at the Large Hadron Collider. Signal region events are required to contain a Z boson that decays leptonically to either e^+e^- or μ^+μ^-, and a significant amount of missing transverse momentum, which indicates the presence of undetected particles. Two types of dark matter models are studied: (1) simplified models with an s-channel axial-vector or vector mediator that couples to dark matter Dirac fermions, and (2) two-Higgs-doublet models with an additional pseudo-scalar that couples to dark matter Dirac fermions. The main Standard Model background sources are ZZ, WZ, non-resonant l^+l^-, and Z+jets processes, which are estimated using a combination of data and/or simulation. A new reweighting technique is developed for estimating the Z+jets background using γ+jets events in data; the resulting estimate significantly improves on the statistical and systematic errors compared to the estimate obtained from simulation. The observed data in the signal region are compared to Standard Model prediction using a transverse mass discriminant distribution. No significant excess in data is observed for the simplified models and two-Higgs-doublet models studied. A statistical analysis is performed and several exclusion limits are set on the parameters of the dark matter models. Results are compared to direct detection experiments, the CMS experiment, and other ATLAS searches. Prospects and improvements for future iterations of the search are also presented. / Graduate
|
32 |
Expansions of neutrino oscillation and decay probabilities in matter / Serieutvecklingar av sannolikheter för oscillationer och sönderfall av neutriner i materiaGrönroos, Jesper January 2023 (has links)
We consider a simple model for invisible neutrino decay as a sub-leading effect in the standard three-flavor neutrino oscillation framework, and use the Cayley–Hamilton formalism to obtain a full set of neutrino oscillation probabilities in matter. These are given as analytical series expansions in the small parameters α ∼ O(λ^2) and s_13 ∼ O(λ), where λ ≡ 0.2 is a “book-keeping parameter” denoting the order of the expansion. We produce explicit formulas for P_eµ, P_eτ , P_µµ, P_µτ , and P_ττ to order O(λ^3), and for P_ee to order O(λ^2), all having first corrections of order O(λ^4). Moreover, we also present vacuum limits of our expressions, as well as discuss the effect of decay on unitarity. We show that all rows in the unitarity table have corrections of order O(λ^2), with the second and third rows having additional corrections of order O(1). In the limit of no decay, unitarity is restored, and we furthermore recover known results for all probabilities. / Vi betraktar en enkel modell för osynligt neutrinosönderfall som en icke-ledande effekt inom det vedertagna ramverket för oscillationer med tre neutrinosmaker och använder Cayley–Hamilton-formalismen för att erhålla en fullständig uppsättning av sannolikheter för neutrinooscillationer i materia. Dessa ges som analytiska serieutvecklingar i de små parametrarna α ∼ O(λ^2) och s_13 ∼ O(λ), där λ ≡ 0.2 är en gemensam “bokföringsparameter” som anger serieutvecklingens ordning. Vi tar fram explicita uttryck för P_eµ, P_eτ , P_µµ, P_µτ och P_ττ till ordning O(λ^3) och för P_ee till ordning O(λ^2), med första korrigeringar för alla sannolikheterna till ordning O(λ^4). Därutöver presenterar vi gränsvärden för våra uttryck i vakuum samt diskuterar sönderfallets inverkan på unitaritet. Vi finner att alla rader i unitaritetstabellen har korrigeringar till ordning O(λ^2) och därtill korrigeringar till ordning O(1) för den andra och tredje raden. I avsaknad av sönderfall återfås unitaritet och vi reproducerar dessutom kända resultatför alla sannolikheter.
|
33 |
Parton Distribution Functions and TensorgluonsKirschner, Roland, Savvidy, George 20 April 2023 (has links)
We derive the regularised evolution equations for the parton distribution functions that include tensorgluons.
|
34 |
Extragalactic and cosmological tests of gravity theories with additional scalar or vector fieldsFeix, Martin January 2011 (has links)
Despite the many successes of the current standard model of cosmology on the largest physical scales, it relies on two phenomenologically motivated constituents, cold dark matter and dark energy, which account for approximately 95% of the energy-matter content of the universe. From a more fundamental point of view, however, the introduction of a dark energy (DE) component is theoretically challenging and extremely fine-tuned, despite the many proposals for its dynamics. On the other hand, the concept of cold dark matter (CDM) also suffers from several issues such as the lack of direct experimental detection, the question of its cosmological abundance and problems related to the formation of structure on small scales. A perhaps more natural solution might be that the gravitational interaction genuinely differs from that of general relativity, which expresses itself as either one or even both of the above dark components. Here we consider different possibilities on how to constrain hypothetical modifications to the gravitational sector, focusing on the subset of tensor-vector-scalar (TeVeS) theory as an alternative to CDM on galactic scales and a particular class of chameleon models which aim at explaining the coincidences of DE. Developing an analytic model for nonspherical lenses, we begin our analysis with testing TeVeS against observations of multiple-image systems. We then approach the role of low-density objects such as cosmic filaments in this framework and discuss potentially observable signatures. Along these lines, we also consider the possibility of massive neutrinos in TeVeS theory and outline a general approach for constraining this hypothesis with the help of cluster lenses. This approach is then demonstrated using the cluster lens A2390 with its remarkable straight arc. Presenting a general framework to explore the nonlinear clustering of density perturbations in coupled scalar field models, we then consider a particular chameleon model and highlight the possibility of measurable effects on intermediate scales, i.e. those relevant for galaxy clusters. Finally, we discuss the prospects of applying similar methods in the context of TeVeS and present an ansatz which allows to cast the linear perturbation equations into a more convenient form.
|
35 |
MAC-E-Filter characterization for PTOLEMY : a relic neutrino direct detection experimentStrid, Carl-Fabian January 2019 (has links)
The cosmic neutrino background (CNB) can be composed of both active and hypothetical sterileneutrinos. At approximately one second after big bang, neutrinos decoupled from radiationand matter at a temperature of approximately one MeV. Neutrinos played an important role inthe origin and evolution of our universe and have been indirectly verified by cosmological dataon the BBN (Big Bang nucleosynthesis) of the Big Bang.It was Steven Weinberg in 1962 that first theorized on the direct detection of relic neutrinos.The signal of the relic neutrino capture on a tritium target can be observed by studying theendpoint of the electrons kinetic energy that are above the endpoint energy of the beta decayspectrum. The PTOLEMY project aims to archive direct detection of the relic neutrinobackground with a large tritium target of 100 gram, MAC-E-Filter, RF-tracking, Time of flighttracking and a cryogenic calorimetry.In this thesis the MAC-E-Filter have been simulated in two filter configurations. In the firstconfiguration, the electron were simulated five times in the filter. Two in the opposite sideof the detector, one in the middle, and two at the detector. In the second configuration theelectrons was simulated in the entrance solenoid at a fixed position of y = -0.19634954 m fromthe center of the filter and in random positions. Both multiple electrons and single electronswere simulated in the second configuration.In the single electron configuration the electron had a starting position of y = -0.19634954 mfrom the center of the filter, and an initial kinetic energy of 18.6 KeV. The first filter configurationsuccessfully accomplished to simulate the electron track, as the electron was reflectedback and forth between the entry and detector solenoid. The electric and magnetic field profilediered at the entry and detector solenoid. The second filter configuration successfully showedthat the electron will reach the end solenoid, when the filter length was 0.5 m. When the filterlength was increased to 0.7 m, then the electron was reflected in the middle of the filter. Thesimulation showed that the electron energy dropped below 1 eV from 18.6 KeV as the electronpropagated through the filter. The magnetic and electric fields decreased exponentially in thedirection of the detector solenoid. The Simulation of multiple electrons showed mixed resultsand would need more modifications in order to come to a final conclusion.
|
36 |
Cosmological probes of light relicsWallisch, Benjamin January 2018 (has links)
One of the primary targets of current and especially future cosmological observations are light thermal relics of the hot big bang. Within the Standard Model of particle physics, an important thermal relic are cosmic neutrinos, while many interesting extensions of the Standard Model predict new light particles which are even more weakly coupled to ordinary matter and therefore hard to detect in terrestrial experiments. On the other hand, these elusive particles may be produced efficiently in the early universe and their gravitational influence could be detectable in cosmological observables. In this thesis, we describe how measurements of the cosmic microwave background (CMB) and the large-scale structure (LSS) of the universe can shed new light on the properties of neutrinos and on the possible existence of other light relics. These cosmological observations are remarkably sensitive to the amount of radiation in the early universe, partly because free-streaming species such as neutrinos imprint a small phase shift in the baryon acoustic oscillations (BAO) which we study in detail in the CMB and LSS power spectra. Building on this analytic understanding, we provide further evidence for the cosmic neutrino background by independently confirming its free-streaming nature in different, currently available datasets. In particular, we propose and establish a new analysis of the BAO spectrum beyond its use as a standard ruler, resulting in the first measurement of this imprint of neutrinos in the clustering of galaxies. Future cosmological surveys, such as the next generation of CMB experiments (CMB-S4), have the potential to measure the energy density of relativistic species at the sub-percent level and will therefore be capable of probing physics beyond the Standard Model. We demonstrate how this improvement in sensitivity can indeed be achieved and present an observational target which would allow the detection of any extra light particle that has ever been in thermal equilibrium. Interestingly, even the absence of a detection would result in new insights by providing constraints on the couplings to the Standard Model. As an example, we show that existing bounds on additional scalar particles, such as axions, may be surpassed by orders of magnitude.
|
37 |
Charged Higgs Bosons at the ATLAS Experiment and BeyondConiavitis, Elias January 2010 (has links)
In the ATLAS experiment at the Large Hadron Collider (LHC) at CERN, direct searches for the elusive Higgs boson will be conducted, as well as for physics beyond the Standard Model. The charged Higgs boson (H±) is interesting both as a part of the Higgs sector, and as a clear sign of new physics. This thesis focuses on H± searches, with H± production in top-antitop pair events, and in particular the bW± bH±, H±→τhadν, W±→qq channel. Its potential was investigated as part of a larger study of the expected performance of the entire ATLAS experiment. Full simulation of the ATLAS detector and trigger was used, and all dominant systematics considered. It was shown to be the most promising H± discovery channel for mH±<mt. As hadronic τ decays are important for H± searches, their correct identification is critical. Possibilities of improving tau-jet identification in pile-up and top-antitop pair events were investigated. Redundant or even performance-reducing variables in the default likelihood identification were identified, as were new variables showing discriminatory power. This allows for increased rejection of QCD jets in these environments, and higher robustness of the method. Before any physics studies, a commissioned and well-understood detector is required. The Lorentz angle of the ATLAS Semi-Conductor Tracker (SCT) barrel was measured using 2008 cosmic-ray data. It is an important observable for the performance of several detector aspects. Potential sources of systematics were investigated and evaluated. The Lorentz angle in the SCT barrel was measured as θL = 3.93 ± 0.03(stat) ± 0.10(syst) degrees, agreeing with the model prediction. The Compact Linear Collider (CLIC) is a proposed successor to the LHC. The potential for charged and heavy neutral Higgs bosons at CLIC was investigated, in terms of both discovery and precision measurement of parameters like tanβ or the Higgs masses, up to and beyond 1 TeV, which would be challenging at the LHC
|
38 |
Physics at the High-Energy Frontier : Phenomenological Studies of Charged Higgs Bosons and Cosmic Neutrino DetectionStål, Oscar January 2009 (has links)
The Standard Model of particle physics successfully describes present collider data. Nevertheless, theoretical and cosmological results call for its extension. A softly broken supersymmetric completion around the TeV scale solves several of the outstanding issues. Supersymmetry requires two Higgs doublets, leading to five physical Higgs states. These include a pair of charged Higgs bosons H±, which are a generic feature of theories with multiple Higgs doublets. Using results from high-energy colliders and flavour physics, constraints are derived on the charged Higgs boson mass and couplings; both for constrained scenarios in the minimal supersymmetric standard model (MSSM) with grand unification, and for general two-Higgs-doublet models. The MSSM results are compared to the projected reach for charged Higgs searches at the Large Hadron Collider (LHC). At the LHC, a light charged Higgs is accessible through top quark decay. Beyond a discovery, it is demonstrated how angular distributions sensitive to top quark spin correlations can be used to determine the structure of the H±tb coupling. The public code 2HDMC, which performs calculations in a general, CP-conserving, two-Higgs-doublet model, is introduced. In parallel to the developments at colliders, the most energetic particles ever recorded are the ultra-high-energy (UHE) cosmic rays. To gain more insight into their origin, new experiments are searching for UHE neutrinos. These searches require detectors of vast volume, which can be achieved by searching for coherent radio pulses arising from the Askaryan effect. The prospects of using a satellite orbiting the Moon to search for neutrino interactions are investigated, and a similar study for an Earth-based radio telescope is presented. In both cases, the method is found competitive for detection of the very highest energy neutrinos considered.
|
39 |
Calibration of the ATLAS calorimeters and discovery potential for massive top quark resonances at the LHCBergeås Kuutmann, Elin January 2010 (has links)
ATLAS is a multi-purpose detector which has recently started to take data at the LHC at CERN. This thesis describes the tests and calibrations of the central calorimeters of ATLAS and outlines a search for heavy top quark pair resonances.The calorimeter tests were performed before the ATLAS detector was assembled at the LHC, in such a way that particle beams of known energy were targeted at the calorimeter modules. In one of the studies presented here, modules of the hadronic barrel calorimeter, TileCal, were exposed to beams of pions of energies between 3 and 9 GeV. It is shown that muons from pion decays in the beam can be separated from the pions, and that the simulation of the detector correctly describes the muon behaviour. In the second calorimeter study, a scheme for local hadronic calibration is developed and applied to single pion test beam data in a wide range of energies, measured by the combination of the electromagnetic barrel calorimeter and the TileCal hadronic calorimeter. The calibration method is shown to provide a calorimeter linearity within 3%, and also to give a reasonable agreement between simulations and data. The physics analysis of this thesis is the proposed search for heavy top quark resonances, and it is shown that a narrow uncoloured top pair resonance, a Z', could be excluded (or discovered) at 95% CL for cross sections of 4.0±1.6 pb (in the case of M=1.0 TeV/c2) or 2.0±0.3 pb (M=2.0 TeV/c2), including systematical uncertainties in the model, assuming √s = 10 TeV and an integrated luminosity of 200 pb-1. It is also shown that an important systematical uncertainty is the jet energy scale, which further underlines the importance of hadronic calibration.
|
40 |
Electroweak radiative B-decays as a test of the Standard Model and beyondTayduganov, Andrey 05 October 2011 (has links) (PDF)
Recently the radiative B-decay to strange axial-vector mesons, B--> K1(1270) gamma, was observed with a rather large branching ratio. This process is particularly interesting as the subsequent K1-decay into its three-body final state allows us to determine the polarization of the photon, which is mostly left(right)-handed for Bbar(B) in the Standard Model while various new physics models predict additional right(left)-handed components. In this thesis, a new method is proposed to determine the polarization, exploiting the full Dalitz plot distribution, which seems to reduce significantly the statistical errors on the polarization parameter lambda_gamma measurement.This polarization measurement requires, however a detailed knowledge of the K1--> K pi pi strong interaction decays, namely, the complex pattern of the various partial wave amplitudes into several possible quasi-two-body channels as well as their relative phases. A number of experiments have been done to extract all these information while there remain various problems in the previous studies. In this thesis, we investigate the details of these problems. As a theoretical tool, we use the 3P0 quark-pair-creation model in order to improve our understanding of strong K1 decays.Finally we try to estimate some theoretical uncertainties: in particular, the one coming from the uncertainty on the K1 mixing angle, and the effect of a possible ''off-set'' phase in strong decay S-waves. According to our estimations, the systematic errors are found to be of the order of sigma(lambda_gamma)^th<20%. On the other hand, we discuss the sensitivity of the future experiments, namely the SuperB factories and LHCb, to lambda_gamma. Naively estimating the annual signal yields, we found the statistical error of the new method to be sigma(lambda_gamma)^stat<10% which turns out to be reduced by a factor 2 with respect to using the simple angular distribution.We also discuss a comparison to the other methods of the polarization measurement using processes, such as B--> K* e^+ e^-, Bd--> K* gamma and Bs--> phi gamma, for the determination of the ratio of the Wilson coefficients C7gamma^'eff/C7gamma^eff. We show an example of the potential constraints on C7gamma^'eff/C7gamma^eff. in several scenarios of supersymmetric models.
|
Page generated in 0.1204 seconds