11 |
Uniaxial-Strain Control of Nematic Superconductivity in SrxBi2Se3 / 一軸ひずみによるSrxBi2Se3のネマティック超伝導の制御Ivan, Kostylev 25 November 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22112号 / 理博第4539号 / 新制||理||1652(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前野 悦輝, 教授 松田 祐司, 教授 石田 憲二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
12 |
77Se Nuclear Magnetic Resonance Study of the Topological Insulator Bi2Se3Georgieva, Nataliya 06 January 2020 (has links)
Topologische Isolatoren stellen eine neue Materialklasse dar, die sich insbesondere
durch eine isolierende Bandlücke im Inneren und gleichzeitig leitenden elektronischen Zuständen an der Oberfläche auszeichnet. Die als hermoelektrischer Halbleiter bekannte Verbindung Bi2Se3 wurde vor einem Jahrzehnt als Mustersystem eines topologischen Isolators identifiziert. Die vorliegende Arbeit ist eine Studie zur kernmagnetischen Resonanz (NMR) am
elenisotop 77Se in CuxBi2Se3-Einkristallen (0,00 ≤ x ≤ 0,17), Bi2Se3-Pulver und nanometergroßen Bi2Se3-Teilchen. Erstmals können zwei Se-Signale unterschieden und eindeutig den beiden chemisch ungleichen Gitterpositionen von Se zugeordnet werden. Eine unerwartet starke, durch Elektronen vermittelte, indirekte Kopplung zwischen den Atomkernen wird anhand großer, feldunabhängiger Linienbreiten postuliert. Die gemessenen ungewöhnlichen Spin-Echo-Zerfälle sind vermutlich eine mittelbare Folge davon. Während bei dem Pulver das Spektrum und die longitudinale Relaxation mit den Einkristalldaten übereinstimmen, wurden bei den Nanoteilchen Signale mit zwei- bis achtmal schnellerer longitudinaler Relaxation separiert. Einfache Modelle werden diskutiert, zum Verständnis der Daten in diesen Systemen mit starker Spin-Bahn-Kopplung, die bis heute kaum mittels NMR verstanden sind.
|
13 |
Thermoelectric Properties of Bi2Se3 and Copper-Nickel AlloyGao, Yibin 18 May 2015 (has links)
No description available.
|
14 |
Optical Study of Inter-band Transitions in Topological Insulators Bi2Se3, Bi2Te3, and Sb2Te3Adhikari, Pan P. January 2017 (has links)
No description available.
|
15 |
Consequences of a non-trivial band-structure topology in solids : Investigations of topological surface and interface statesBerntsen, Magnus H. January 2013 (has links)
The development and characterization of experimental setups for angle-resolved photoelectron spectroscopy (ARPES) and spin- and angle-resolved photoelectron spectroscopy (SARPES) is described. Subsequently, the two techniques are applied to studies of the electronic band structure in topologically non-trivial materials. The laser-based ARPES setup works at a photon energy of 10.5 eV and a typical repetition rate in the range 200 kHz to 800 kHz. By using a time-of-flight electron energy analyzer electrons emitted from the sample within a solid angle of up to ±15 degrees can be collected and analyzed simultaneously. The SARPES setup is equipped with a traditional hemispherical electron energy analyzer in combination with a mini-Mott electron polarimeter. The system enables software-controlled switching between angle-resolved spin-integrated and spin-resolved measurements, thus providing the possibility to orient the sample by mapping out the electronic band structure using ARPES before performing spin-resolved measurements at selected points in the Brillouin zone. Thin films of the topological insulators (TIs) Bi2Se3, Bi2Te3 and Sb2Te3 are grown using e-beam evaporation and their surface states are observed by means of ARPES. By using a combination of low photon energies and cryogenic sample temperatures the topological states originating from both the vacuum interface (surface) and the substrate interface are observed in Bi2Se3 films and Bi2Se3/Bi2Te3 heterostructures, with total thicknesses in the ultra-thin limit (six to eight quintuple layers), grown on Bi-terminated Si(111) substrates. Band alignment between Si and Bi2Se3 at the interface creates a band bending through the films. The band bending is found to be independent of the Fermi level (EF) position in the bulk of the substrate, suggesting that the surface pinning of EF in the Si(111) substrate remains unaltered after deposition of the TI films. Therefore, the type and level of doping of the substrate does not show any large influence on the size of the band bending. Further, we provide experimental evidence for the realization of a topological crystalline insulator (TCI) phase in the narrow-band semiconductor Pb1−xSnxSe. The TCI phase exists for temperatures below the transition temperature Tc and is characterized by an inverted bulk band gap accompanied by the existence of non-gapped surface states crossing the band gap. Above Tc the material is in a topologically trivial phase where the surface states are gapped. Thus, when lowering the sample temperature across Tc a topological phase transition from a trivial insulator to a TCI is observed. SARPES studies indicate a helical spin structure of the surface states both in the topologically trivial and the TCI phase. / <p>QC 20130507</p>
|
16 |
Exploring the Photoresponse and Optical Selection Rules in the Semiconductor Nanowires, Topological Quantum Materials and Ferromagnetic Semiconductor Nanoflakes using Polarized Photocurrent SpectroscopyPournia, Seyyedesadaf 04 October 2021 (has links)
No description available.
|
Page generated in 0.0175 seconds