• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 15
  • Tagged with
  • 45
  • 36
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

From Horns to Helmets: Multi-Objective Design Optimization Considerations to Protect the Brain

Johnson, Kyle Leslie 12 August 2016 (has links)
This dissertation presents an investigation and design optimization of energy absorbent protective systems that protect the brain. Specifically, the energy absorption characteristics of the bighorn sheep skull-horn system were quantified and used to inform a topology optimization performed on a football helmet facemask leading to reduced values of brain injury indicators. The horn keratin of a bighorn sheep was experimentally characterized in different stress states, strain rates, and moisture contents. Horn keratin demonstrated a clear strain rate dependence in both tension and compression. As the strain rate increased, the flow stress increased. Also, increased moisture content decreased the strength and increased ductility. The hydrated horn keratin energy absorption increased at high strain rates when compared to quasi-static data. The keratin experimental data was then used to inform constitutive models employed in the simulation of bighorn sheep head impacts at 5.5 m/s. Accelerations values as high as 607 G’s were observed in finite element simulations for rams butting their heads, which is an order of magnitude higher than predicted brain injury threshold values. In the most extreme case, maximum tensile pressure and maximum shear strains in the ram brain were 245 kPa and 0.28, respectively. These values could serve as true injury metrics for human head impacts. Finally, a helmeted human head Finite Element (FE) model is created, validated, and used to recreate impacts from a linear impactor. The results from these simulations are used to train a surrogate model, which is in turn utilized in multi-objective design optimization. Brain injury indicators were significantly reduced by performing multi-objective design optimization on a football helmet facemask. In particular, the tensile pressure and maximum shear strain in the brain decreased 7.5 % and 39.5 %, respectively when comparing the optimal designs to the baseline design. While the maximum tensile pressure and maximum shear strain values in the brain for helmeted head impacts (30.2 kPa and 0.011) were far less than the ram impacts (245 kPa and 0.28), helmet impacts up to 12.3 m/s have been recorded, and could easily surpass these thresholds.
42

Using Remote Cameras to Estimate the Abundance of Ungulates

Taylor, Jace C 01 December 2017 (has links)
Many wildlife populations globally are experiencing unprecedented declines, and without accurate and precise estimates of abundance, we will not be able to conserve these vulnerable species. Remote cameras have rapidly advanced as wildlife monitoring tools and may provide accurate and precise estimates of abundance that improve upon traditional methods. Using remote cameras to estimate abundance may be less expensive, less intrusive, less dangerous, and less time consuming than other methods. While it is apparent that remote cameras have a place in the future of wildlife monitoring, research, and management, many questions remain concerning the proper use of these tools. In an effort to answer some of these questions, we used remote cameras to study a population of Rocky Mountain bighorn sheep (Ovis canadensis) in Utah, USA from 2012 to 2014. In Chapter 1, we compared methods using remote cameras against 2 traditional methods of estimating abundance. In Chapter 2, we evaluated the relationship between deployment time of cameras and proportion of photos needed to be analyzed to obtain precise estimates of abundance. We found that methods using remote cameras compared favorably to traditional methods of estimating abundance, and provided a number of valuable advantages. In addition, we found that remote cameras can produce precise estimates of abundance in a relatively short sampling period. Finally, we identified the optimal sampling period to produce precise estimates of abundance for our study population. Our findings can help researchers better utilize the potential of remote cameras, making them a more suitable alternative to traditional wildlife monitoring.
43

Using Remote Cameras to Estimate the Abundance of Ungulates

Taylor, Jace C 01 December 2017 (has links)
Many wildlife populations globally are experiencing unprecedented declines, and without accurate and precise estimates of abundance, we will not be able to conserve these vulnerable species. Remote cameras have rapidly advanced as wildlife monitoring tools and may provide accurate and precise estimates of abundance that improve upon traditional methods. Using remote cameras to estimate abundance may be less expensive, less intrusive, less dangerous, and less time consuming than other methods. While it is apparent that remote cameras have a place in the future of wildlife monitoring, research, and management, many questions remain concerning the proper use of these tools. In an effort to answer some of these questions, we used remote cameras to study a population of Rocky Mountain bighorn sheep (Ovis canadensis) in Utah, USA from 2012 to 2014. In Chapter 1, we compared methods using remote cameras against 2 traditional methods of estimating abundance. In Chapter 2, we evaluated the relationship between deployment time of cameras and proportion of photos needed to be analyzed to obtain precise estimates of abundance. We found that methods using remote cameras compared favorably to traditional methods of estimating abundance, and provided a number of valuable advantages. In addition, we found that remote cameras can produce precise estimates of abundance in a relatively short sampling period. Finally, we identified the optimal sampling period to produce precise estimates of abundance for our study population. Our findings can help researchers better utilize the potential of remote cameras, making them a more suitable alternative to traditional wildlife monitoring.
44

Economic Geology of the Big Horn Mountains of West-Central Arizona

Allen, George B. January 1985 (has links)
The Big Horn Mountains are a geologically complex range that extends over 500 square km in west-central Arizona. Three major lithologic terranes outcrop: (1) Proterozoic amphibolite, phyllite, schists, gneiss, and granite; (2) Mesozoic monzonite to diorite intrusives; and (3) Cenozoic mafic to silicic volcanic rocks and clastic rocks. The entire area is in the upper plate of a detachment fault and, consequently, contains many low- to high-angle normal faults. Each lithologic terrane has its associated mineral occurrences. The Big Horn district is exclusively hosted in the pre- Tertiary terrane. Most of its mineral occurrences are spatially related to the Late Cretaceous intrusive rocks. One occurrence, the Pump Mine, may be a metamorphic secretion deposit, and therefore, would be middle Proterozoic. The vast majority of the mineral occurrences in the Big Horn Mountains are middle Tertiary in age and occur in three districts: the Tiger Wash barite - fluorite district; the Aguila manganese district; and the Osborne base and precious metal district. Fluid inclusions from Tiger Wash fluorite (T(h) 120 to 210° C, NaCl wt. equivalent 17 to 18 percent not corrected for CO₂) and nearby detachment - fault- hosted Harquahala district fluorite (T(h) 150 to 230° C., NaC1 wt. equivalent 15.5 to 20 percent not corrected for CO₂) suggest cooling and dilution of fluids as they are presumed to evolve from the detachment fault into the upper plate. Mass-balance calculations suggest that the proposed evolution of fluids is sufficient to account for the observed tonnage of barite and fluorite. The Tiger Wash occurrences grade directly into calcite- gangue-dominated manganese oxides of the Aguila district. A wide range of homogenization temperatures (T(h) 200 to 370° C.), an absence of CO₂ and low salinities (NaC1 wt. equivalent 1 to 2 percent) in the Aguila district calcite-hosted fluid inclusions argue for distillation of fluids during boiling or boiling of non saline-meteoric waters. Mass - balance calculations modeling the evolution of Ca and Mn during potassium metasomatism of plagioclase in basalt suggest that little if any influx of these cations is necessary to form the calcite –dominated manganese oxide tonnage observed. The Aguila district grades directly to the east into the base-metal and precious-metal occurrences of the Osborne district. Preliminary data describing geological settings, fluid inclusions, and geochemistry suggest that the Osborne district has a continuum between gold-rich to silver-rich epithermal occurrences. The gold-rich systems have dominantly quartz gangue, with or without fluorite, and are hosted in a variety of rocks, but are proximal to Precambrian phyllite or mid-Tertiary rhyolite. Fluid inclusions from two occurrences representative of the gold -rich systems spread across a minor range (T(h) 190 to 230° C., NaC1 wt. equivalent 17 to 23 percent not corrected for CO₂). Dilution of highly saline fluids is the inferred mechanism for precipitation of gold in the gold-quartz systems. The silver-rich systems have dominantly calcite gangue with or without quartz, and are hosted in mid-Tertiary basalt. Calcite fluid inclusions from a representative high-silver occurrence display a wide range of homogenization temperatures and salinities (T(h) 120 to 370° C., NaC1 wt. equivalent 7 to 23 percent). Boiling and consequent neutralization of acidic solutions is the inferred mechanism for the silver-rich, calcite gangue systems. A model inferring a regional fluid-flow regime and local sources of metals is proposed. Four possible regional and local causes of fluid flow in upper-plate detachment regimes are proposed: (1) regional elevation of geothermal gradients as a result of middle-crustal, lower-plate rocks rising to upper crustal levels; (2) meteoric water recharge along the southeast flank of the Harquahala antiform and consequent displacement of connate waters in the upper-plate of the Big Horn Mountains; (3) local emplacement of feeder stocks to rhyolitic flows; (4) and tilting of major upper-plate structural blocks.
45

Structure Property Relations and Finite Element Analysis of Ram Horns: A Pathway to Energy Absorbent Bio-Inspired Designs

Trim, M W (Michael Wesley) 06 August 2011 (has links)
A recently emerging engineering design approach entails studying the brilliant design solutions found in nature with an aim to develop design strategies that mimic the remarkable efficiency found in biological systems. This novel engineering approach is referred to as bio-inspired design. In this context, the present study quantifies the structure-property relations in bighorn sheep (Ovis canadensis) horn keratin, qualitatively characterizes the effects of a tapered spiral geometry (the same form as in a ram’s horn) on pressure wave and impulse mitigation, describes the stress attenuation capabilities and features of a ram’s head, and compares the structures and mechanical properties of some energy absorbent natural materials. The results and ideas presented herein can be used in the development of lightweight, energy absorbent, bio-inspired material designs. Among the most notable conclusions garnered from this research include: Horn keratin behaves in an anisotropic manner similar to a long fiber composite. Moisture content dominates the material behavior of horn keratin more than anisotropy, age, and stress-state. This makes moisture content the most influential parameter on the mechanical behavior of horn keratin. Tapered geometries mitigate the impulse generated by a stress wave due to the convergent boundary and a continually decreasing cross sectional area such that greater uniaxial stresses and subsequent axial deformation arises. Furthermore, the tapered geometry introduces small shear stresses that further decrease the impulse. Spiral geometries attenuate the impulse generated by a stress wave by the introduction of shear stresses along the length of the spiral. These shear stresses introduce transverse displacements that function to lessen the impulse. When both a taper and spiral geometry are used in a design, their synergistic effects multiplicatively reduce the impulse Tough natural materials have a high porosity, which makes them light-weight, while increasing their compressive energy absorption ability. Biomaterials whose functions include protection and energy absorption feature a multiscale, hierarchical, composite structure. The constituent materials are arranged in such ways to achieve a synergistic effect, where the properties of the composite exceed the properties of its constituents. Biological materials are therefore not confined to the law of mixtures.

Page generated in 0.3031 seconds