1 |
Contribuição para um método de dimensionamento de plantas de biogásSouza, José de January 2015 (has links)
Apresenta-se na tese proposta uma contribuição ao método aplicado no projeto de plantas de biogás composto de seis passos. Inicia-se com o levantamento de dados do local de instalação da planta de biogás, o planejamento, dimensionamento da planta de biogás e a escolha de tecnologias. Por fim segue a modelagem mecânica computacional em CAD e por último a simulação dos tanques biorreatores com programas computacionais. A metodologia desenvolvida foi testada no projeto de uma planta de biogás para biodigestão de silagem de milho (35000 m3 ao ano) no município de São Francisco de Paula-RS. O biorreator foi dimensionado com volume de 2100 m3 e um volume de biogás gerado foi estimado em 18219 m3 por dia. As simulações mecânicas computacionais foram executadas para a escolha da espessura das chapas a serem utilizadas nos tanques biorreatores. Foram dimensionados os biorreatores da planta e simulados em três materiais metálicos distintos, o aço duplex AISI 318, o aço austenítico AISI 316L e o aço carbono laminado ASTM A36. A melhor chapa verificada para o caso foi a do aço AISI 318 utilizando-se chapas de 1,5 a 3,0 mm de espessura. A diminuição da espessura reduz em 29% em massa o material empregado na fabricação dos tanques biorreatores em comparação com o uso de espessuras de chapas 3 mm em todo o tanque. Já para o aço AISI 316 L e ASTM A-36 diminui-se em 34% em massa do material a ser empregado na fabricação dos tanques biorreatores caso sejam utilizadas diferentes espessuras. / This thesis presents a contribution to the method for the biogas plant project and consists of six steps. Start with the location of data collection biogas plant installation, planning, biogas plant design and the choice of technologies. Finally follows the computational mechanical modeling in CAD and simulation of bioreactor tanks with computer programs. The methodology was tested in a design of a biogas plant for digestion of corn silage (35,000 m3 per year) in São Francisco de Paula-RS. The bioreactor was sized with a volume of 2100 m3 for a volume of 18,219 m3 of biogas per day. The mechanical computer simulations were performed to select the thickness of the sheets to be used in the bioreactor tank. The bioreactor plant and were scaled simulated in three different metallic materials, the duplex steel AISI 318, AISI 316L austenitic steel and rolled carbon steel ASTM A36. The plate most suitable for the manufacturing was the AISI 318 steel with thickness of 1.5 to 3.0 mm. With the simulation we obtained a decrease of plate thickness. This generated a mass reduction of 29% of the material used in manufacturing the tank bioreactors compared to using a 3 mm plate thickness throughout the tank. For steel AISI 316L and ASTM A-36 we subtract 34% by weight of the material to be used in manufacturing the tank bioreactors where different thicknesses are used as computer simulation.
|
2 |
Contribuição para um método de dimensionamento de plantas de biogásSouza, José de January 2015 (has links)
Apresenta-se na tese proposta uma contribuição ao método aplicado no projeto de plantas de biogás composto de seis passos. Inicia-se com o levantamento de dados do local de instalação da planta de biogás, o planejamento, dimensionamento da planta de biogás e a escolha de tecnologias. Por fim segue a modelagem mecânica computacional em CAD e por último a simulação dos tanques biorreatores com programas computacionais. A metodologia desenvolvida foi testada no projeto de uma planta de biogás para biodigestão de silagem de milho (35000 m3 ao ano) no município de São Francisco de Paula-RS. O biorreator foi dimensionado com volume de 2100 m3 e um volume de biogás gerado foi estimado em 18219 m3 por dia. As simulações mecânicas computacionais foram executadas para a escolha da espessura das chapas a serem utilizadas nos tanques biorreatores. Foram dimensionados os biorreatores da planta e simulados em três materiais metálicos distintos, o aço duplex AISI 318, o aço austenítico AISI 316L e o aço carbono laminado ASTM A36. A melhor chapa verificada para o caso foi a do aço AISI 318 utilizando-se chapas de 1,5 a 3,0 mm de espessura. A diminuição da espessura reduz em 29% em massa o material empregado na fabricação dos tanques biorreatores em comparação com o uso de espessuras de chapas 3 mm em todo o tanque. Já para o aço AISI 316 L e ASTM A-36 diminui-se em 34% em massa do material a ser empregado na fabricação dos tanques biorreatores caso sejam utilizadas diferentes espessuras. / This thesis presents a contribution to the method for the biogas plant project and consists of six steps. Start with the location of data collection biogas plant installation, planning, biogas plant design and the choice of technologies. Finally follows the computational mechanical modeling in CAD and simulation of bioreactor tanks with computer programs. The methodology was tested in a design of a biogas plant for digestion of corn silage (35,000 m3 per year) in São Francisco de Paula-RS. The bioreactor was sized with a volume of 2100 m3 for a volume of 18,219 m3 of biogas per day. The mechanical computer simulations were performed to select the thickness of the sheets to be used in the bioreactor tank. The bioreactor plant and were scaled simulated in three different metallic materials, the duplex steel AISI 318, AISI 316L austenitic steel and rolled carbon steel ASTM A36. The plate most suitable for the manufacturing was the AISI 318 steel with thickness of 1.5 to 3.0 mm. With the simulation we obtained a decrease of plate thickness. This generated a mass reduction of 29% of the material used in manufacturing the tank bioreactors compared to using a 3 mm plate thickness throughout the tank. For steel AISI 316L and ASTM A-36 we subtract 34% by weight of the material to be used in manufacturing the tank bioreactors where different thicknesses are used as computer simulation.
|
3 |
Contribuição para um método de dimensionamento de plantas de biogásSouza, José de January 2015 (has links)
Apresenta-se na tese proposta uma contribuição ao método aplicado no projeto de plantas de biogás composto de seis passos. Inicia-se com o levantamento de dados do local de instalação da planta de biogás, o planejamento, dimensionamento da planta de biogás e a escolha de tecnologias. Por fim segue a modelagem mecânica computacional em CAD e por último a simulação dos tanques biorreatores com programas computacionais. A metodologia desenvolvida foi testada no projeto de uma planta de biogás para biodigestão de silagem de milho (35000 m3 ao ano) no município de São Francisco de Paula-RS. O biorreator foi dimensionado com volume de 2100 m3 e um volume de biogás gerado foi estimado em 18219 m3 por dia. As simulações mecânicas computacionais foram executadas para a escolha da espessura das chapas a serem utilizadas nos tanques biorreatores. Foram dimensionados os biorreatores da planta e simulados em três materiais metálicos distintos, o aço duplex AISI 318, o aço austenítico AISI 316L e o aço carbono laminado ASTM A36. A melhor chapa verificada para o caso foi a do aço AISI 318 utilizando-se chapas de 1,5 a 3,0 mm de espessura. A diminuição da espessura reduz em 29% em massa o material empregado na fabricação dos tanques biorreatores em comparação com o uso de espessuras de chapas 3 mm em todo o tanque. Já para o aço AISI 316 L e ASTM A-36 diminui-se em 34% em massa do material a ser empregado na fabricação dos tanques biorreatores caso sejam utilizadas diferentes espessuras. / This thesis presents a contribution to the method for the biogas plant project and consists of six steps. Start with the location of data collection biogas plant installation, planning, biogas plant design and the choice of technologies. Finally follows the computational mechanical modeling in CAD and simulation of bioreactor tanks with computer programs. The methodology was tested in a design of a biogas plant for digestion of corn silage (35,000 m3 per year) in São Francisco de Paula-RS. The bioreactor was sized with a volume of 2100 m3 for a volume of 18,219 m3 of biogas per day. The mechanical computer simulations were performed to select the thickness of the sheets to be used in the bioreactor tank. The bioreactor plant and were scaled simulated in three different metallic materials, the duplex steel AISI 318, AISI 316L austenitic steel and rolled carbon steel ASTM A36. The plate most suitable for the manufacturing was the AISI 318 steel with thickness of 1.5 to 3.0 mm. With the simulation we obtained a decrease of plate thickness. This generated a mass reduction of 29% of the material used in manufacturing the tank bioreactors compared to using a 3 mm plate thickness throughout the tank. For steel AISI 316L and ASTM A-36 we subtract 34% by weight of the material to be used in manufacturing the tank bioreactors where different thicknesses are used as computer simulation.
|
4 |
Addressing the Electricity Shortfall in Pakistan through Renewable resourcesHameedi, Ayoub January 2012 (has links)
This report focuses on addressing the electricity shortfall in Pakistan with the help of renewable resources. At present, the country is facing a shortfall of almost 7,000 megawatts (MW) which is affecting every walk of life and causing almost 1.5 to 2% GDP loss on annual basis. Previous research done on this subject reveals that electricity demand has always remained high then the total generation capacity of Pakistan. Similarly, it has been pointed out that the country is not taking maximum benefit from its available hydro, solar and wind resources. This leads us to the basic purpose of this research which is to have an exploratory understanding of the strategies adopted by India, China, Brazil and Spain for electricity generation in a green fashion and how can these strategies be implemented in Pakistan. Case study has been adopted as methodology for this purpose. This research work also discusses the factors contributing in the lack of promotion of renewable energy resources in Pakistan and provide detailed analyses of positive changes these projects can bring in lives of masses in Pakistan. The sustainable management of surface water resource in the country has been discussed in particular as the country faced worst floods in its history during years 2010 & 2011. It will result in enhancing the surface water storage ability of Pakistan which will significantly reduce our dependence on underground water reserves and will directly increase our electricity generation capacity through hydro dams. Similarly, sustainable forest management has been discussed at length as it will not only ensure environmental sustainability but will also result in increase availability of biomass. Not to mention the fact that wood biomass is much cheaper then conventional source of electricity generation provided it is obtained through sustainable forest management. Finally, if all the green strategies discussed in this research work will be implemented, it will increase the overall electricity generation capacity of Pakistan up to 9% respectively.
|
5 |
Membranova separace bioplynu / Membrane Separation of BiogasDedinský, Tomáš January 2017 (has links)
The thesis handles the problem of biogas purification by membrane separation method, and its application on existing biogas plants. Assessing of impacts of this implementation is carried out from technical and economical point of view.
|
6 |
Vývoj, optimalizace a validace analytické metody na stanovení těkavých mastných kyselin ve vodných vzorcích metodou GC/MSOPEKAR, Jan January 2018 (has links)
This thesis is focused on the development of an analytical method for the determination of volatile fatty acids in aqueous samples using GC-MS/MS. The theoretical section provides general information on a selected group of acids, their significance in the biogas plants, the means of their derivatization and the analytical techniques used. The practical part mainly deals with optimizition of various parameters in the derivatization reaction to achieve optimal conditions. Finally, the analytical method was successfully validated and applied to the analysis of a real sample.
|
7 |
Can rural Gaza Strip be both biogas “self-sufficient” and organic waste and wastewater problem free?Alsultan, Mohammed January 2013 (has links)
The rural areas in the Gaza Strip suffer from the problem of sanitation and organic waste as well as electricity and cooking fuel. In this thesis, the biogas plant was designed to solve those problems based on the fixed dome plant design as shown in Figure 3 and4. Therefore, the efficiency and selectivity was good for biogas plant which is easy for the local people disposal of organic waste and wastewater as well as self-sufficiency of biogas for cooking and electricity for the family. The sediments from the biogas plant are also used as fertilizers in agriculture. Thus it is possible to know the amount of biogas production, the cost of biogas, the amount of fertilizer, the cost of fertilizers and the amount of disposal of organic waste and wastewater. The calculation shows that the size of digester which is equal to 12 cubic meters as shown in figure 4.The construction is cost of $ 930 as shown in Table 2. Through the results will be disposed of organic waste, wastewater and manure are about 48 kilograms per day for the family. The Biogas is produced 0.5 tons of biogas is estimated about $ 100 in rural areas in the Gaza Strip. It is also produced fertilizers equivalent of $ 113 per month. So the results and calculations are clear that the rural family is self-sufficient of biogas, the dispose of organic waste and wastewater and agricultural growth by the fertilizers from the biogas plant.
|
Page generated in 0.066 seconds