Spelling suggestions: "subject:"biointerface."" "subject:"interfaces.""
1 |
Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable modelHughes, Zak, Tomasio, S.M., Walsh, T.R. 13 March 2019 (has links)
No / To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies. / Veski
|
2 |
Biodisponibilité et dynamique de partition de métaux traces aux interphases microbiennes : effets de complexation intracellulaire et application aux biosenseurs bactériens / Bioavailability and Partitioning Dynamics of Trace Metals at Microbial Interphases : Intracellular Complexation Effects and Application to Whole-Cell Metal-Sensing BioreportersPrésent, Romain 29 June 2018 (has links)
La biodisponibilité d'un métal pour un organisme donné correspond à la fraction de ce métal qui est potentiellement bioadsorbable et/ou biointernalisable. Elle dépend de la composition physicochimique du milieu, de la nature des surfaces biologiques considérées et elle est modulée par la réponse cellulaire des organismes. Dans un contexte environnemental, l’analyse des processus contrôlant la bioassimilation des métaux est essentielle pour une prédiction fiable de leur biodisponibilité et toxicité. Dans ce manuscrit sont détaillés des développements théoriques et expérimentaux visant à comprendre la dynamique de partition de contaminants métalliques aux interfaces microbiennes et les déterminants de leur biodisponibilité selon une approche qui dépasse les cadres thermodynamiques classiques (modèle BLM). Après une partie introductive et une revue de l'état de l'art, le troisième chapitre de cette thèse est dédié à l'élaboration d'un formalisme pour l'évaluation quantitative de la bio-partition hors-équilibre de métaux traces aux interfaces biologiques. Ce modèle théorique est basé sur les expressions des flux de contaminants depuis la solution extracellulaire vers la surface biologique par diffusion/conduction, des flux d'internalisation et excrétion à travers la membrane, et il tient compte de la cinétique de déplétion des métaux en solution. Le formalisme intègre par ailleurs les processus de complexation intracellulaire des métaux sur la base d'un mécanisme d'Eigen généralisé. Dans le quatrième chapitre, des souches d'Escherichia coli ont été génétiquement modifiées pour (i) limiter leurs capacités d'excrétion des métaux et (ii) sur-exprimer des protéines intracellulaires ayant une forte affinité pour ces métaux. Des données expérimentales issues de suivis cinétiques de déplétion de Cd(II) réalisées à différentes fractions volumiques en bactéries ont permis de conforter avec succès les bases de la théorie élaborée dans cette thèse pour la partition de métaux à des biointerfaces molles chargées. Un dernier chapitre est consacré à l’évaluation quantitative de la réponse de biosenseurs luminescents en présence de métaux. Ce formalisme décrit la façon avec laquelle la dérivée temporelle des biosignaux dépend de la dynamique d’internalisation du métal, de la cinétique de formation de complexes intracellulaires régulateurs des processus de transcription et de leurs stabilités, et des processus de bio-sorption passive. Une confrontation avec des données expérimentales issues de biosenseurs sensibles au cadmium a permis de mettre en évidence l’inapplicabilité des modèles d’équilibre de biodistribution des métaux, et de prédire la réponse des biosenseurs à des variations de la salinité du milieu, de la concentration cellulaire et de la concentration bulk de métaux / Bioavailability of metal ions toward living organisms refers to the metal fraction they potentially adsorb and/or internalize. It is governed by the physicochemical medium composition, the nature of the biological surface considered and it is further mediated by the cellular response of the organisms. Within an environmental context, a fine understanding of the processes controlling metal biouptake is mandatory to predict bioavailability and toxicity of metallic contaminants. Here are detailed theoretical and experimental developments to broaden our knowledge on dynamic partitioning of metallic contaminants at microbial interfaces beyond the standard thermodynamic representation (BLM model). After an introduction and a state of the art section, the third chapter is devoted to the elaboration of a rationale for the evaluation of the processes governing metal biouptake under relevant out-of-equilibrium conditions. The formalism expresses the fluxes of contaminants from bulk medium to the biosurface via conductive diffusion, the biouptake and excretion fluxes with account of metal depletion kinetics in the extracellular medium. It also includes chemodynamics of intracellular metal complexation as described by a generalized Eigen scheme. In the fourth chapter, strains of \textit{Escherichia coli} were genetically modified to limit metal excretion ability and overexpress strong intracellular proteinaceous chelators. Quantitative interpretation of metal depletion kinetic data confort the bases of the theory developed in this PhD work on metal partitioning at soft charged biointerfaces. The final chapter deals with a development of a theoretical framework for understanding -on a mechanistic level- the response of metal-sensitive whole-cell bioreporters. The theory explicitly deciphers how the time derivative of bioreporters signal intensity is governed by the dynamics of metal biouptake, by the formation kinetics and stability of the intracellular complexes acting as transcriptional regulators, and by passive biosorption. The model predictions are successfully collated with cadmium detection data collected with genetically modified Escherichia coli luminescent bioreporters that exhibit various lipopolysaccharidic surface structures. The analysis dismisses the applicability of thermodynamic metal biopartitioning models and it clearly defines the physicochemical medium composition in line with optimum biosensing of the bioavailable metal fraction
|
3 |
Phase Behavior of Sugar-Oil Complex Fluids and Synthesis of Photodynamic BiointerfacesAndrews, Ross N. 26 May 2016 (has links)
No description available.
|
4 |
Enhancing the functionality of photovoltaic and photonic biointerfaces through structurationWenzel, Tobias January 2017 (has links)
This two-part thesis focuses on biointerfaces of two different biological systems. It specifically examines the interplay of structure and functionality in these biointerfaces. Part one studies photo-bio-electrochemically active bacteria and the strong dependence of their electrical current generation on electrode structure and pigment organisation. Part two uncovers surprising design principles of photonic structures on flower petals and presents research tools to study disordered optical systems. Biophotovoltaics (BPV) is a newly described biophysical effect in which a biofilm of photosynthetic microorganisms associated with an anode produces electrical current that can be harvested and passed through an external circuit. In this thesis-part, an experimental set-up is presented to quantitatively measure photo-electric activity of cyanobacteria in BPVs. Using this set-up, a systematic study of anode morphologies reveals that large electrode surface areas enhance photocurrents by two orders of magnitude, identifying structuration as key design criterion for bioelectrochemical interfaces. Electrodes with micrometer-sized pores allow enhanced direct contact area with bacteria, but with tested cyanobacteria this did not result in a photocurrent increase, disproving recent speculations in the literature. Furthermore, a theoretic-mathematical framework is presented to estimate light-energy utilisation in biofilms. It is detailed how pigment concentration and distribution affects the light-level dependent saturation of electron harvesting biofilms. This study brings the theory together with experiments, such as genetic modification and photo-current measurements. Part two of this thesis approaches the interaction of light and biointerface structuration from a different angle. In a significant extension of the candidate’s MPhil project, it was discovered that the disorder in natural photonic structures can be an advantage rather than a limitation in biology. With biological image analysis, optics simulations and nano-manufacturing a new photonic effect is uncovered which is iridescent but surprisingly constant in chroma. In collaboration with plant scientists, it is shown that many flowers have co-evolved disordered surface structuration that generates this bee visible colouration.
|
5 |
Fabrication et Fonctionnalisation de BioMEMS par Plasma Froid pour l'Analyse de la Biocatalyse en Spectroscopie TeraHertzAbbas, Abdennour 27 February 2010 (has links) (PDF)
Avec l'avènement des BioMEMS (Bio-MicroElectroMechanical Systems), ce sont toutes les pratiques médicales, biologiques, environnementales et agro-alimentaires qui entament une nouvelle ère. Les enjeux scientifique et industriel se rejoignent dans la miniaturisation des systèmes de détection, l'amélioration de leurs sensibilités et la simplification de leurs procédés de fabrication. Cette thèse hautement interdisciplinaire s'inscrit dans le cadre de ces enjeux. Elle expose la fabrication, la bio-fonctionnalisation et l'application d'un BioMEMS pour l'analyse de réactions enzymatiques en temps réel et à l'échelle micrométrique. Deux choix stratégiques ont été adoptés pour ce travail: le premier concerne l'utilisation de la technologie des plasmas froids ou polymérisation plasma pour la fonctionnalisation de surface à travers le dépôt de films polymères d'allylamine. Ce dépôt a permis ultérieurement l'immobilisation covalente de la trypsine (enzyme modèle protéolytique) au sein du BioMEMS. Cette technologie a été également utilisée pour développer une méthode simple de microfabrication des circuits microfluidiques compatible avec une production à grande échelle. Le second choix concerne l'utilisation de ce bioMEMS autour d'une transduction TeraHertz (THz) mise au point au sein de l'équipe. La spectroscopie THz vise à détecter les événements moléculaires à l'échelle de la picoseconde, sans marqueur et d'une manière non-invasive, en sondant directement les liaisons chimiques de faible énergie. Au cours de ce travail, nous avons donc développé un procédé de fonctionnalisation de surfaces par des amines, optimisé une méthode de greffage des enzymes, et étudié l'activité de la trypsine immobilisée. Nous avons ensuite intégré ces étapes dans le procédé de microfabrication du BioMEMS. Les mesures réalisées dans le domaine sub-THz (0,06-0,11 THz) sur une réaction de biocatalyse confirment la faisabilité d'une telle approche comme méthode analytique en biologie. Les résultats des différentes études montrent également que le mariage des plasmas froids avec les méthodes lithographiques représente une voie efficace, rapide et très compétitive pour le transfert de la technologie des BioMEMS à l'échelle industrielle.
|
Page generated in 0.0579 seconds