• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modélisation et prédiction de la dynamique moléculaire de la maladie de Huntington par la théorie des graphes au travers des modèles et des espèces, et priorisation de cibles thérapeutiques / Huntington's disease, gene network, transcriptomics analysis, computational biology, spectral graph theory, neurodegenerative mechanisms

Parmentier, Frédéric 17 September 2015 (has links)
La maladie de Huntington est une maladie neurodégénérative héréditaire qui est devenue un modèle d'étude pour comprendre la physiopathologie des maladies du cerveau associées à la production de protéines mal conformées et à la neurodégénérescence. Bien que plusieurs mécanismes aient été mis en avant pour cette maladie, dont plusieurs seraient aussi impliqués dans des pathologies plus fréquentes comme la maladie d’Alzheimer ou la maladie de Parkinson, nous ne savons toujours pas quels sont les mécanismes ou les profils moléculaires qui déterminent fondamentalement la dynamique des processus de dysfonction et de dégénérescence neuronale dans cette maladie. De même, nous ne savons toujours pas comment le cerveau peut résister aussi longtemps à la production de protéines mal conformées, ce qui suggère en fait que ces protéines ne présentent qu’une toxicité modérée ou que le cerveau dispose d'une capacité de compensation et de résilience considérable. L'hypothèse de mon travail de thèse est que l'intégration de données génomiques et transcriptomiques au travers des modèles qui récapitulent différentes phases biologiques de la maladie de Huntington peut permettre de répondre à ces questions. Dans cette optique, l'utilisation des réseaux de gènes et la mise en application de concepts issus de la théorie des graphes sont particulièrement bien adaptés à l'intégration de données hétérogènes, au travers des modèles et au travers des espèces. Les résultats de mon travail suggèrent que l'altération précoce (avant les symptômes, avant la mort cellulaire) et éventuellement dès le développement cérébral) des grandes voies de développement et de maintenance neuronale, puis la persistance voire l'aggravation de ces effets, sont à la base des processus physiopathologiques qui conduisent à la dysfonction puis à la mort neuronale. Ces résultats permettent aussi de prioriser des gènes et de générer des hypothèses fortes sur les cibles thérapeutiques les plus intéressantes à étudier d'un point de vue expérimental. En conclusion, mes recherches ont un impact à la fois fondamental et translationnel sur l'étude de la maladie de Huntington, permettant de dégager des méthodes d'analyse et des hypothèses qui pourraient avoir valeur thérapeutique pour les maladies neurodégénératives en général. / Huntington’s disease is a hereditary neurodegenerative disease that has become a model to understand physiopathological mechanisms associated to misfolded proteins that ocurs in brain diseases. Despite exciting findings that have uncover pathological mechanisms occurring in this disease and that might also be relevant to Alzheimer’s disease and Parkinson’s disease, we still do not know yet which are the mechanisms and molecular profiles that rule the dynamic of neurodegenerative processes in Huntington’s disease. Also, we do not understand clearly how the brain resist over such a long time to misfolded proteins, which suggest that the toxicity of these proteins is mild, and that the brain have exceptional compensation capacities. My work is based on the hypothesis that integration of ‘omics’ data from models that depicts various stages of the disease might be able to give us clues to answer these questions. Within this framework, the use of network biology and graph theory concepts seems particularly well suited to help us integrate heterogeneous data across models and species. So far, the outcome of my work suggest that early, pre-symptomatic alterations of signaling pathways and cellular maintenance processes, and persistency and worthening of these phenomenon are at the basis of physiopathological processes that lead to neuronal dysfunction and death. These results might allow to prioritize targets and formulate new hypotheses that are interesting to further study and test experimentally. To conclude, this work shall have a fundamental and translational impact to the field of Huntington’s disease, by pinpointing methods and hypotheses that could be valuable in a therapeutic perspective.
12

Viab-Cell, développement d'un logiciel viabiliste sur processeur multicoeurs pour la simulation de la morphogénèse / Development of a viabilist software on multi-core CPU for morhogenesis simulation

Sarr, Abdoulaye 08 December 2016 (has links)
Ce travail présente un modèle théorique de morphogenèse animale, sous la forme d’un système complexe émergeant de nombreux comportements, processus internes, expressions et interactions cellulaires. Son implémentation repose sur un automate cellulaire orienté système multi-agents avec un couplage énergico-génétique entre les dynamiques cellulaires et les ressources.Notre objectif est de proposer des outils permettant l’étude numérique du développement de tissus cellulaires à travers une approche hybride (discrète/continue et qualitative/quantitative) pour modéliser les aspects génétiques, énergétiques et comportementaux des cellules. La modélisation de ces aspects s’inspire des principes de la théorie de la viabilité et des données expérimentales sur les premiers stades de division de l’embryon du poisson-zèbre.La théorie de la viabilité appliquée à la morphogenèse pose cependant de nouveaux défis en informatique pour pouvoir implémenter des algorithmes dédiés aux dynamiques morphologiques. Le choix de données biologiques pertinentes à considérer dans le modèle à proposer, la conception d’un modèle basé sur une théorie nouvelle, l’implémentation d’algorithmes adaptés reposant sur des processeurs puissants et le choix d’expérimentations pour éprouver nos propositions sont les enjeux fondamentaux de ces travaux. Les hypothèses que nous proposons sont discutées au moyen d’expérimentations in silico qui ont porté principalement sur l’atteignabilité et la capturabilité de formes de tissus ; sur la viabilité de l’évolution d’un tissu pour un horizon de temps ; sur la mise en évidence de nouvelles propriétés de tissus et la simulation de mécanismes tissulaires essentiels pour leur contrôlabilité face à des perturbations ; sur de nouvelles méthodes de caractérisation de tissus pathologiques, etc. De telles propositions doivent venir en appoint aux expérimentations in vitro et in vivo et permettre à terme de mieux comprendre les mécanismes régissant le développement de tissus. Plus particulièrement, nous avons mis en évidence lors du calcul de noyaux de viabilité les relations de causalité ascendante reliant la maintenance des cellules en fonction des ressources énergétiques disponibles et la viabilité du tissu en croissance. La dynamique de chaque cellule est associée à sa constitution énergétique et génétique. Le modèle est paramétré à travers une interface permettant de prendre en compte le nombre de coeurs à solliciter pour la simulation afin d’exploiter la puissance de calcul offerte par les matériels multi-coeurs. / This work presents a theoretical model of animal morphogenesis, as a complex system from which emerge cellular behaviors, internal processes, interactions and expressions. Its implementation is based on a cellular automaton oriented multi-agent system with an energico-genetic coupling between the cellular dynamics and resources. Our main purpose is to provide tools for the numerical study of tissue development through a hybrid approach (discrete/continuous and qualitative/quantitative) that models genetic, behavioral and energetic aspects of cells. The modeling of these aspects is based on the principles of viability theory and on experimental data on the early stages of the zebrafish embryo division. The viability theory applied to the morphogenesis, however, raises new challenges in computer science to implement algorithms dedicated to morphological dynamics. The choice of relevant biological data to be considered in the model to propose, the design of a model based on a new theory, the implementation of suitable algorithms based on powerful processors and the choice of experiments to test our proposals are fundamental issues of this work. The assumptions we offer are discussed using in silico experiments that focused on the reachability and catchability of tissue forms ; on the viability of the evolution of a tissue for a time horizon ; on the discovery of new tissue properties and simulation of tissue mechanisms that are fondamental for their controllability face to disruptions ; on new pathological tissue characterization methods, etc. Such proposals must come extra to support experiments in vitro and in vivo and eventually allow a better understanding of the mechanisms governing the development of tissues.In particular, we have highlighted through the computing of viability kernels the bottom causal relationship between the maintenance of cells according to available energy resources and the viability of the tissue in growth. The model is set through an interface that takes into account the number of cores to solicit for simulation in order to exploit the computing power offered by multicore hardware.
13

Comparaison de réseaux biologiques

Mohamed Babou, Hafedh 06 November 2012 (has links) (PDF)
La comparaison de réseaux biologiques est actuellement l'une des approches les plus prometteuses pour aider à la compréhension du fonctionnement des organismes vivants. Elle apparaît comme la suite attendue de la comparaison de séquences biologiques dont l'étude ne représente en réalité que l'aspect génomique des informations manipulées par les biologistes. Dans cette thèse, nous proposons une approche innovante permettant de comparer deux réseaux biologiques modélisés respectivement par un graphe orienté D et un graphe non-orienté G, et dotés d'une fonction f établissant la correspondance entre les sommets des deux graphes. L'approche consiste à extraire automatiquement une structure dans D, biologiquement significative, dont les sommets induisent dans G, par f, une structure qui soit aussi biologiquement significative. Nous réalisons une étude algorithmique du problème issu de notre approche en commençant par sa version dans laquelle D est acyclique (DAG). Nous proposons des algorithmes polynomiaux pour certains cas, et nous montrons que d'autres cas sont algorithmiquement difficiles (NP-complets). Pour résoudre les instances difficiles, nous proposons une bonne heuristique et un algorithme exact basé sur la méthode branch-and-bound. Pour traiter le cas où D est cyclique, nous introduisons une méthode motivée par des hypothèses biologiques et consistant à décomposer D en DAGs tels que les sommets de chaque DAG induisent dans G un sous-graphe connexe. Nous étudions également dans cette thèse, l'inférence des voies de signalisation en combinant les informations sur les causes et sur les effets des événements extra-cellulaires. Nous modélisons ce problème par un problème d'orientation de graphes mixtes et nous effectuons une étude de complexité permettant d'identifier les instances faciles et celles difficiles.

Page generated in 0.1366 seconds