• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Long-range interactions in biological systems / Interactions de longue-portée dans les systèmes biologiques

Preto, Jordane 10 October 2012 (has links)
L'auto-organisation des organismes vivants est d'une complexité et d'une efficacité étonnantes. Plus précisément, les systèmes biologiques abritent un nombre gigantesque de réactions très spécifiques qui nécessitent que la bonne biomolécule se retrouve à la bonne place, dans le bon ordre et en un temps suffisamment court pour permettre le fonctionnement cellulaire, et au-delà la vie cellulaire. D'un point de vue dynamique, cela pose la question fondamentale de savoir comment les biomolécules trouvent efficacement leur(s) cible(s) spécifique(s), ou encore, quels types de forces rassemblent tous ces partenaires de réaction spécifiques dans un environnement aussi dense et ionisé que les micro-environnements cellulaires. Dans cette thèse, nous explorons la possibilité que des biomolécules puissent interagir à travers des interactions électromagnétiques de longue-portée telles que ces dernières sont prédites à partir des premiers principes de la physique; ''longue-portée'' signifiant que les interactionsen question sont actives sur des distances bien plus larges que les dimensions typiques des molécules mises en jeu (i.e., plus grandes qu'environ 50 angströms dans les systèmes biologiques). Après avoir posé les fondements théoriques concernant les interactionsde longue-portée potentiellement actives sur de longue distances dans un contexte biologique, nous étudions la posssibilité de détecter leur éventuelle contribution à partir de dispositifs expérimentaux qui sont accessibles de nos jours. Sur ce dernier point, des résultats préliminaires encourageants tant sur le plan théorique qu'expérimental sont présentés. / Self-organization of living organisms is of an astonishing complexity and efficiency. More specifically, biological systems are the site of a huge number of very specific reactions thatrequire the right biomolecule to be at the right place, in the right order and in a reasonably short time to sustain cellular function and ultimately cellular life. From the dynamic point of view, this raises the fundamental question of how biomolecules effectively find their target(s); in other words, what kinds of forces bring all these specific cognate partners together in an environment as dense and ionized as cellular micro-environments. In the present thesis, we explore the possibility that biomolecules interact through long-range electromagnetic interactions as they are predicted from the first principles of physics; "long-range" meaning that the mentioned interactions are effective over distances much larger than the typical dimensions of the molecules involved (i.e., larger than about 50 angströms in biological systems).After laying the theoretical foundations about interactions that are potentially active over long distances in a biological context, we investigate the possibility of detecting their contribution from experimental devices which are nowadays available. On the latter point, encouraging preliminary results both at the theoretical and experimental levels are exposed.
2

Détection expérimentale de recrutements longues portées entre biomolécules dues à une force sélective et résonante : étude de faisabilité / Feasibility study of the experimental detection of long-range selective resonant recruitment forces between biomolécules

Nardecchia, Ilaria 12 October 2012 (has links)
Ce travail de thèse parti de l'observation que la maintenance des fonctions cellulaires est basée sur l'orchestration précise d'interactions fonctionnelles entre biomolécules telles que l'ADN, l'ARN et les protéines. Bien que ces processus basiques ne montrent pas généralement une organisation spatiale stricte, ils semblent néanmoins contraints par des schémas dynamiques ou spatiaux précis. Cela pose ainsi la question des forces pouvant, dans un microenvironnement cellulaire, diriger les différents acteurs de processus biochimiques complexes au bon endroit, au bon moment et dans le bon ordre afin d'assurer les fonctions cellulaires essentielles. L'existence de forces sélectives à longue portée de nature électromagnétique, pouvant être responsables de l'extraordinaire efficacité des machineries biomoléculaires, est prédite par la mécanique quantique et l'électrodynamique; par longue portée, nous entendons entre 0.1 à 1 micron, ce qui est bien au delà de celle des forces traditionnelles reconnues comme les forces électrostatiques, de van der Waals-London ou les liaisons hydrogènes. Aucune procédure expérimentale ne fut proposée à ce jour pour confirmer ou infirmer cette hypothèse d'une utilisation efficace de telles forces électromagnétiques dans la matière vivante. Si ces forces sélectives de recrutement à longue portée sont effectivement actives au niveau biomoléculaire, cela constituerait un pas important vers une compréhension des processus et mécanismes cellulaires fondamentaux (expression génique, division cellulaire, signalisation, etc.). / The main subject of the present thesis work stems from the observation that the maintenance of cell functions is based on a precise orchestration of functional interactions between biomolecules such as DNA, RNA and proteins. Although these basic processes generally do not exhibit strict spatial organization, they seem constrained into a very accurate temporal - or dynamic - pattern. This raises the question of what types of physical forces can, in the cellular microenvironments, bring the various actors of complex biochemical processes both in the right place, at the right time and in the right order so as to ensure the essential cellular functions. The existence of selective, long-range forces of electromagnetic nature that may be responsible for the extraordinary efficiency of the biomolecular machineries is predicted by quantum mechanics and electrodynamics ; long-range meaning here of the order of 0.1-1 micron, well beyond the traditionally recognized forces, electrostatic ones, hydrogen bonds, van der Waals-London, etc.). Yet, to date, no experimental test has been proposed to disprove or confirm the hypothesis of an effective exploitation of such electromagnetic forces in living matter. If these selective, long-range recruitment forces were found to be active at the biomolecular level, this would represent an important step forward to the understanding of fundamental cellular processes and mechanisms (gene expression, cell division, signalling, etc.).

Page generated in 0.0995 seconds