Spelling suggestions: "subject:"precursor""
1 |
Re-engineering of the Duocarmycin Structural Architecture Enables Bioprecursor Development Targeting CYP1A1 and CYP2W1 for Biological ActivitySheldrake, Helen M., Travica, S., Johansson, I., Loadman, Paul, Sutherland, Mark, Elsalem, Lina M.I., Illingworth, Nicola A., Cresswell, Alexander J., Reuillon, Tristan, Shnyder, Steven, Mkrtchian, S., Searcey, M., Ingelman-Sundberg, M., Patterson, Laurence H., Pors, Klaus 11 July 2013 (has links)
Yes / A library of duocarmycin bioprecursors based on the CPI and CBI scaffolds was synthesized and used to probe selective activation by cells expressing CYP1A1 and 2W1, CYPs known to be expressed in high frequency in some tumors. Several CPI-based compounds were pM–nM potent in CYP1A1 expressing cells. CYP2W1 was also shown to sensitize proliferating cells to several compounds, demonstrating its potential as a target for tumor selective activation of duocarmycin bioprecursors.
|
2 |
Probing cytochrome P450 (CYP) bioactivation with chloromethylindoline bioprecursors derived from the duocarmycin family of compoundsOrtuzar, N., Karu, K., Presa, Daniela, Morais, Goreti R., Sheldrake, Helen M., Shnyder, Steven D., Barnieh, Francis M., Loadman, Paul, Patterson, Laurence H., Pors, Klaus, Searcey, M. 05 October 2023 (has links)
Yes / The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation. / The authors would like to thank Yorkshire Cancer Research (Program grant B381PA) for supporting our work focused on exploring CYPs as targets for prodrug development. The human recombinant CYP1A1 was a gift from Prof Emily E. Scott, University of Michigan; the enzyme was produced via NIH funded grant (R37 GM076343).
|
3 |
Probing cytochrome P450 (CYP) bioactivation with chloromethylindoline bioprecursors derived from the duocarmycin family of compoundsOrtuzar, N., Karu, K., Presa, Daniela, Morais, Goreti R., Sheldrake, Helen M., Shnyder, Steven, Barnieh, Francis M., Loadman, Paul, Patterson, Laurence H., Pors, Klaus, Searcey, M. 06 July 2021 (has links)
Yes / The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.
|
4 |
Investigation of cytochrome p450 isoforms 1A1, 1B1 and 2W1 as targets for therapeutic intervention in head and neck cancer. Probing CYP1A1, 1B1 and 2W1 activity with duocarmycin bioprecursorsPresa, Daniela January 2018 (has links)
The full text will be available at the end of the embargo: 30th July 2026
|
Page generated in 0.0301 seconds