Spelling suggestions: "subject:"bioreactor a membrana"" "subject:"biorreator a membrana""
1 |
Tratamiento de aguas residuales mediante electrocoagulación acoplada a un MBR para minimizar el ensuciamiento de la membrana y obtener efluentes de alta calidadMendes Predolin, Lyvia 08 February 2019 (has links)
La demanda mundial de agua ha ido aumentando y seguirá creciendo de manera significativa en los próximos años en función del aumento de la población, del desarrollo económico y los cambios en los patrones de consumo, entre otros factores. Los niveles extremadamente bajos de tratamiento de las aguas residuales en los países con ingresos medios-altos y medios-bajos, y la reducción del agua disponible muestran la imperiosa necesidad de realizar mejoras tecnológicas para contar con opciones seguras para la reutilización del agua. La composición de las aguas residuales municipales puede variar notoriamente, debido a la gran diversidad de contaminantes liberados por las distintas fuentes domésticas, industriales, comerciales e institucionales. Los hábitos de consumo de la sociedad actual generan una serie de contaminantes en el agua residual que anteriormente no eran conocidos y/o no detectados. Estos microcontaminantes (MCs) se introducen a diario en el medio ambiente en muy bajas concentraciones, principalmente a través de los efluentes de las estaciones depuradoras de aguas residuales (EDARs) actuales. El constante aumento en el uso de MCs requiere tecnologías de tratamiento más eficientes para lograr su reducción o eliminación en las aguas residuales. En las grandes y medianas aglomeraciones urbanas el procedimiento más habitual para el tratamiento de los vertidos líquidos es el de lodos activados, en sus distintas modalidades, que desde sus primeras aplicaciones a principios del siglo XX se ha convertido en el tratamiento mundialmente más extendido. No obstante, con el objetivo de mejorar la calidad del efluente obtenido en este tratamiento convencional y promover su reutilización, en los últimos años se intensificaron las investigaciones de otras posibles tecnologías para el tratamiento de las aguas residuales. La tecnología MBR (Membrane Biological Reactor o Membrane Bioreactor) es conocida por producir efluentes de elevada calidad y eliminar eficazmente una amplia gama de MCs, incluidos algunos compuestos que son resistentes al proceso de lodos activados y otros procesos convencionales. Los MBR incluyen dos procesos principales: la unidad biológica, responsable de la degradación de la materia orgánica presente en el agua residual (biodegradación), y la unidad de filtración, encargada de llevar a cabo la separación sólido-líquido del licor mezcla. En el campo de tratamiento de aguas residuales, los MBR son muy valorados por sus ventajas, aunque también presentan algunos inconvenientes. A pesar de los numerosos avances tecnológicos logrados a lo largo de los años, el ensuciamiento de la membrana sigue siendo uno de los mayores desafíos en la aplicación de esta tecnología. Esta desventaja se debe a múltiples causas, principalmente derivados de las características de las membranas, de la biomasa y del afluente, así como de las condiciones de operación. Estudios recientes reportan que para incrementar la eliminación de los contaminantes más recalcitrantes se puede combinar este proceso con otras tecnologías. Así, algunos trabajos realizados en casi su totalidad con aguas sintéticas, demuestran que la integración de procesos electroquímicos (electrocoagulación, EC) con la tecnología MBR ofrece prometedoras ventajas. La electrocoagulación es una tecnología bastante conocida y utilizada desde hace muchos años principalmente en el tratamiento de aguas residuales industriales. El proceso se lleva a cabo mediante la generación in situ de coagulantes debido a la aplicación de una corriente eléctrica que provoca la oxidación electrolítica de un material anódico apropiado, comúnmente de aluminio o de hierro. En este sentido surge un sistema innovador, el Electro-Biorreactor de Membrana (EMBR) que combina las ventajas de las tecnologías MBR (tratamiento biológico y filtración de membrana) y electrocoagulación. La aplicación de la EC puede ser capaz de reducir la adhesión de sustancias en la superficie de la membrana y mejorar la eficiencia de eliminación de diversos contaminantes. Esta investigación aborda la puesta en marcha y operación de un EMBR piloto para el tratamiento de aguas residuales reales, con el objetivo general de verificar si se reduce el ensuciamiento de la membrana, en relación con un MBR sin electrocoagulación, y si se mejora de la calidad del efluente. La planta piloto EMBR se ubicó en dos depuradoras distintas, realizándose por tanto la investigación en dos etapas, primero en la EDAR de Santomera (Murcia, España) y posteriormente en la EDAR de Monte Orgegia (Alicante, España). Se verificó de esta manera el comportamiento del EMBR con distintas características del afluente y factores estacionales. En la EDAR de Santomera, la planta piloto se alimentó con un agua residual municipal que incorpora un significativo componente industrial, mientras que en la EDAR de Monte Orgegia el agua residual urbana no tiene aporte industrial. La temperatura varió entre 12 y 30°C, el pH entre 6,7 y 8,0 y la conductividad entre 1.500 y 4.000 µS/cm. En las dos etapas de la investigación se evaluó el impacto de la densidad de corriente (DC) aplicada sobre la calidad del efluente, las propiedades del lodo y el ensuciamiento de la membrana, y los resultados fueron comparados con el sistema MBR convencional. Para analizar la calidad del efluente se verificó el grado de reducción de materia orgánica (DQO), nutrientes (nitrógeno total, amonio, fósforo total) y de un total de 22 microcontaminantes (9 fármacos, 4 parabenos, 3 hormonas, 2 surfactantes, 1 plastificante, 1 producto de higiene personal y 2 pesticidas). Respecto a las propiedades del lodo, se analizaron los parámetros biocinéticos, los bioindicadores, los sólidos suspendidos (MLSS), la viscosidad, el índice volumétrico (IVF), la morfología flocular y las sustancias poliméricas extracelulares (EPS). Para la medición del ensuciamiento de la membrana se verificó la evolución de la presión transmembrana (PTM). Los resultados obtenidos en cada fase fueron contrastados mediante análisis estadístico. En relación a la mejora de calidad del efluente, los resultados demostraron que el sistema EMBR incrementó su calidad, principalmente respecto a la eliminación de fósforo, y los contaminantes carbamazepina, claritromicina y diclofenaco. En relación a la eficiencia en la reducción del ensuciamiento de la membrana, el sistema EMBR presentó un impacto positivo en las propiedades del lodo y consecuentemente en el ensuciamiento de la membrana. El índice volumétrico de fango (IVF), la viscosidad y las fracciones de proteínas y carbohidratos de las EPS solubles presentaron reducciones significativas respecto al MBR. Por su parte, se logró disminuir la PTM hasta un 73%, con una DC de 5 A/m2 lo que nos indica que con un bajo consumo energético (0,16 kWh/m3) es posible lograr una buena sinergia entre las tecnologías MBR y la electrocoagulación.
|
2 |
Eliminación de microcontaminantes orgánicos presentes en aguas residuales urbanas mediante MBR combinado con oxidación avanzada y con filtración por membranasVásquez-Rodríguez, Edgardo D. 28 June 2018 (has links)
En muchas regiones del mundo con escasez de agua, la reutilización de los efluentes de las estaciones depuradoras de aguas residuales (EDAR) se convierte en una alternativa cada vez más extendida y deseable. En los últimos años, gracias al desarrollo de técnicas analíticas avanzadas capaces de detectar contaminantes a muy baja concentración, se ha puesto en evidencia la presencia de microcontaminantes en los efluentes de las EDAR. Dado que las investigaciones recientes han demostrado que tienen efectos adversos sobre el medio ambiente y la salud humana, es necesario el uso de un tratamiento terciario para el refinado de estas aguas, a fin de evitar que los microcontaminantes (MCs) lleguen al agua de riego y a los cuerpos de aguas naturales. Se trata en muchos casos de sustancias de uso cotidiano como productos farmacéuticos y de cuidado personal, plastificantes, pesticidas, retardantes de llama, drogas de abuso, surfactantes, nanomateriales, entre otros. Todo ello probablemente relacionado con su uso masivo por parte de la población y por la deficiencia de los tratamientos biológicos actuales, que no fueron diseñados para hacer frente a este tipo de contaminantes. La tecnología de biorreactores de membrana (MBR) comprende la combinación del sistema convencional de lodos activados con la filtración mediante membranas, obteniendo un permeado de alta calidad con una elevada tasa de degradación de los microcontaminantes. No obstante, algunos son más refractarios al tratamiento MBR. Por lo tanto, es necesario un tratamiento adicional para la eliminación y la oxidación de compuestos refractarios, que pueden ser los procesos de oxidación avanzados (POA), que se basan principalmente en la generación de radicales hidroxilo (HO∙) con un alto potencial oxidativo y baja especificidad, capaces de mineralizar y degradar una gran variedad de compuestos orgánicos. Entre los POAs, la ozonización es un proceso en el que la oxidación puede tener lugar a través de vías directas e indirectas. Mientras que la vía directa de la oxidación se produce por medio de ozono molecular, durante la vía indirecta se produce a través del radical hidroxilo generado por la descomposición de ozono. En el caso de la fotólisis, que es un proceso en el que las moléculas de MCs sufren descomposición como resultado de la absorción de luz o radiaciones. Existen dos tipos de fotólisis: la fotólisis directa en la que la absorción directa de los fotones conduce a la degradación de los contaminantes y la fotólisis indirecta que se produce en presencia de fotosensibilizadores que absorben la luz y generan radicales oxigenados reactivos que realizan la degradación de la sustancia objetivo. Por otro lado, la optimización de las tecnologías existentes y el desarrollo de nuevas técnicas para el tratamiento, incluyendo la tecnología de membranas, la cual ha surgido como una importante innovación para el tratamiento y la recuperación de efluentes de EDAR. Durante los últimos años, esta tecnología ha recibido mucha atención por parte de investigadores y fabricantes, como resultado de una mejora de los materiales y técnicas de membranas, que proporcionan flujos más altos, una vida útil más larga, una disminución considerable del coste para la eliminación del ensuciamiento, etc. Además la separación de MCs del efluente tratado. El principal objetivo de la presente investigación es buscar un sistema que pueda eliminar/degradar los contaminantes emergentes de las aguas residuales, para ello se emplea un sistema combinado que consiste en una planta piloto de MBR, alimentada con aguas residuales sintéticas, de características similares a la urbana, para evaluar la eliminación de los MCs a diferentes edades del lodo. Los efluentes obtenidos se tratan mediante procesos adicionales de filtración (NF y OI), ozonización y radiación UV para eliminar los contaminantes refractarios, y su posterior comparación en cuanto a rendimiento de eliminación/degradación de los 30 MCs seleccionados. Para este estudio se utilizó un MBR a escala laboratorio de 90 L, con un módulo de membranas sumergido interno, fibra hueca de microfiltración, con un tamaño de poro de 0,4 µm y una superficie filtrante de 1 m2. El afluente utilizado es agua residual sintética dopada con los 30 microcontaminantes seleccionados, pertenecientes a las familias de triazinas, organoclorados, fármacos, hormonas, productos de cuidado personal, surfactantes, parabenos y plastificantes. Además se ha operado a tiempos de retención celular de 30 y 60 días. Para los post-tratamientos se utilizó un generador de ozono Modelo Anseros, COM-AD-01 con una generación efectiva de 4 g O3/h @ 100NL∙h-1, acoplado a una de columna de 0,75 L para el contacto ozono-agua. Para la realización del tratamiento UV se utiliza un fotoreactor con una lámpara de baja presión (LP) con una potencia regulable de 5-20 W de potencia con emisiones UV de 185 – 254 nm de la marca UV-Consulting peschl España. El sistema de filtración consiste en un módulo de células con agitación Amicon, los cuales son un soporte de filtros que posee juntas tóricas. A este módulo se le acoplaron membranas de NF (FILMTEC NF270) y OI (FILMTEC XLE-2521) con el objetivo de filtrar los efluentes del MBR. La mayoría de los compuestos han podido ser eliminado/degradado mediante el sistema MBR, Sin embargo algunos compuestos resultaron refractarios al tratamiento MBR como la simazina, atrazina, terbutilazina, linuron, alacloro y lindano, pertenecientes al grupo de triazinas y organoclorados, mientras que en el grupo de fármacos y hormonas, la carbamazepina, diclofenaco y 17-α-etinilestradiol son los compuestos refractarios al tratamiento MBR principalmente debido a sus condiciones hidrofílicas y a la persistencia de sus grupos funcionales. Según los resultados obtenidos en este estudio la dosis óptima para la ozonización es de 16 mg O3∙L-1, ya que con ésta se obtuvieron altos rendimientos superiores al 91% de eliminación de los compuestos refractarios, principalmente para los fármacos. Los resultados obtenidos en este estudio muestran que la dosis óptima UV es de 5.374 mJ∙cm2 ya que con ésta se obtuvieron altos rendimientos de eliminación combinado con un pretratamiento MBR con rendimientos superiores a 87% de eliminación de los compuestos biorefractarios, siendo los organoclorados y triazinas los mejores eliminados. Debido a que el tratamiento MBR y la oxidación UV u O3 son capaces de eliminar MCs por diferentes mecanismos de degradación, un sistema híbrido que involucre MBR + UV u O3 puede aprovechar su naturaleza complementaria. La oxidación UV y O3 puede complementar muy bien el tratamiento MBR, resultando en más del 85% de eficiencia de eliminación de los 30 MCs seleccionados en este estudio, incluyendo aquellos que son mal eliminados por tratamiento MBR u oxidación con UV u O3 cuando se implementan por separado. El sistema MBR+ NF obtiene rendimientos superiores al 83%, mientras que la configuración MBR+OI presentó rendimientos superiores al 96% de separación del agua producto. De hecho, el tratamiento con membrana NF/OI complementa muy bien el tratamiento con MBR, y la mayoría de los 30 MCs seleccionados en este estudio se eliminaron por debajo de los límites de detección. En este trabajo de investigación se muestran cuatro posibles combinaciones de tecnologías para la eliminación/degradación de los MCs presentes en las aguas residuales urbanas pero se deja bien claro que la selección de la tecnología depende del tipo de agua a tratar, los tipos de microcontaminantes que estén presentes y el uso final de ese efluente. Además de otros aspectos técnicos y económicos.
|
Page generated in 0.5469 seconds