• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-normal Bivariate Distributions: Estimation And Hypothesis Testing

Qumsiyeh, Sahar Botros 01 November 2007 (has links) (PDF)
When using data for estimating the parameters in a bivariate distribution, the tradition is to assume that data comes from a bivariate normal distribution. If the distribution is not bivariate normal, which often is the case, the maximum likelihood (ML) estimators are intractable and the least square (LS) estimators are inefficient. Here, we consider two independent sets of bivariate data which come from non-normal populations. We consider two distinctive distributions: the marginal and the conditional distributions are both Generalized Logistic, and the marginal and conditional distributions both belong to the Student&rsquo / s t family. We use the method of modified maximum likelihood (MML) to find estimators of various parameters in each distribution. We perform a simulation study to show that our estimators are more efficient and robust than the LS estimators even for small sample sizes. We develop hypothesis testing procedures using the LS and the MML estimators. We show that the latter are more powerful and robust. Moreover, we give a comparison of our tests with another well known robust test due to Tiku and Singh (1982) and show that our test is more powerful. The latter is based on censored normal samples and is quite prominent (Lehmann, 1986). We also use our MML estimators to find a more efficient estimator of Mahalanobis distance. We give real life examples.
2

Modelos de regressão com e sem fração de cura para dados bivariados em análise de sobrevivência / Models with and without fraction of cure for bivariate data in survival analysis

Fachini, Juliana Betini 19 August 2011 (has links)
Neste trabalho são reunidos diferentes modelos e técnicas para representar situações experimentais ou observacionais de análise de sobrevivência. Para modelar respostas bivariadas e covariáveis foi proposto o modelo de regressão Kumaraswamy-Weibull bivariado. A presen»ca de indivíduos curados foi considerada sob duas diferentes abordagens, originando o modelo de regressão com fração de cura para dados bivariados por meio de cópulas e o modelo de regressão log-linear bivariado com fração de cura. Os parâmetros dos modelos foram esti- mados pelo método de máxima verossimilhança sujeito a restriçãoo nos parâmetros por meio da função barreira adaptada. Adaptou-se uma análise de sensibilidade de forma a considerar as metodologias de Influência Global, Influência Local e Influência Local Total para verificar vários aspectos que envolvem a formulação e ajuste dos modelos propostos. Utilizou-se um conjunto de dados de insuficiência renal e retinopatia diabética são utilizados para exemplificar a aplicação dos modelos propostos. / This work brought together di®erent models and techniques to represent expe- rimental or observational situations in survival analysis. To model bivariate responses and covariates was proposed Kumaraswamy Weibull bivariate regression model. The presence of cured individuals was considered under two di®erent approaches originating the regression model with a cured fraction for bivariate data through copulas and the log-linear bivariate regression model with cured fraction. The parameters of the models were estimated by ma- ximum likelihood method subject to the restriction on the parameters through the adapted barrier function. A sensitivity analysis was adapted considering the methodologies of Global In°uence, Local In°uence and Total Local In°uence to check various aspects of the formulation and adjustment of the models proposed. Data set of renal failure and diabetic retinopathy are used to exemplify the application of the proposed models.
3

Modelos de regressão com e sem fração de cura para dados bivariados em análise de sobrevivência / Models with and without fraction of cure for bivariate data in survival analysis

Juliana Betini Fachini 19 August 2011 (has links)
Neste trabalho são reunidos diferentes modelos e técnicas para representar situações experimentais ou observacionais de análise de sobrevivência. Para modelar respostas bivariadas e covariáveis foi proposto o modelo de regressão Kumaraswamy-Weibull bivariado. A presen»ca de indivíduos curados foi considerada sob duas diferentes abordagens, originando o modelo de regressão com fração de cura para dados bivariados por meio de cópulas e o modelo de regressão log-linear bivariado com fração de cura. Os parâmetros dos modelos foram esti- mados pelo método de máxima verossimilhança sujeito a restriçãoo nos parâmetros por meio da função barreira adaptada. Adaptou-se uma análise de sensibilidade de forma a considerar as metodologias de Influência Global, Influência Local e Influência Local Total para verificar vários aspectos que envolvem a formulação e ajuste dos modelos propostos. Utilizou-se um conjunto de dados de insuficiência renal e retinopatia diabética são utilizados para exemplificar a aplicação dos modelos propostos. / This work brought together di®erent models and techniques to represent expe- rimental or observational situations in survival analysis. To model bivariate responses and covariates was proposed Kumaraswamy Weibull bivariate regression model. The presence of cured individuals was considered under two di®erent approaches originating the regression model with a cured fraction for bivariate data through copulas and the log-linear bivariate regression model with cured fraction. The parameters of the models were estimated by ma- ximum likelihood method subject to the restriction on the parameters through the adapted barrier function. A sensitivity analysis was adapted considering the methodologies of Global In°uence, Local In°uence and Total Local In°uence to check various aspects of the formulation and adjustment of the models proposed. Data set of renal failure and diabetic retinopathy are used to exemplify the application of the proposed models.
4

Multivariate Measures of Dependence for Random Variables and Levy Processes

Belu, Alexandru C. 21 May 2012 (has links)
No description available.

Page generated in 0.0884 seconds