• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of horizontal water turbine

Li, Wen-yi 05 September 2008 (has links)
This thesis investigates the relations between (1) free stream velocity, blade radius as well as the number of blades, and (2) generated torque, power and efficiency in the design of a water turbine. In the study, blade element momentum theory (BEMT) is exploited to devise the shape of the horizontal water turbine. Further, a CFD package is in used to simulate the flow and pressure fields. The result shows that torque and power generated by turbine vary with such parameters as inlet velocity and blade radii. As the number of blade increases, the generated power is also on the rise but to a lessened degree.It is due to the fact that fluid can hardly flow into the cross section as the blade number increases, which brings about lower cross-section velocity. So the rotational speed should decline as a consequence to obtain the angle of attack satisfying the greatest lift-drag ratio. The largest power efficiency is thus gained.
2

The performances of different comparative distances on water turbine

Chiu, Po-lin 06 September 2010 (has links)
This thesis aims to investigate the performance of a horizontal water turbine in ocean current. The design of the water turbine is based on the Blade Element Momentum theory to begin with. As the water current flows past a single turbine, the water inflow velocity and the rotational speed are the parameters to be investigated. Furthermore, the interaction of more than two turbines due to the relative distance is also discussed. The relative distance encompasses both the front and the back. The results show that the water inflow velocity and the turbine rotational speed influence the performance of the turbine. When two turbines function simultaneously, the flow field is different from the one of a single turbine and thus influences the performance of the other turbines in the vicinity. Lastly, the site arrangement of three turbines is discussed, and it is revealed that a proper arrangement can enhance the performance of the turbines.

Page generated in 0.3891 seconds