• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical properties of low density fibre-reinforced cellular concrete and its energy absorption potential against air blast

Amirrasouli, Benyamin January 2015 (has links)
The scope of this study is to establish extensive material tests to determine the mechanical properties of cellular concrete and evaluate its potential as energy absorption material against air blast load. This study includes a literature review of existing studies on cellular concrete, proportioning, and its mechanical properties, together with studies on the properties and application of other foams such as aluminium and polymer foams. It is concluded that, unlike other foam materials, there is a lack of systematic studies on the mechanical properties of cellular concrete especially for densities less than 1000 kg/m3. The survey also reviewed the existence of materials being used as a sacrificial layer against air blast load, together with the analytical models proposed to determine the parameters required to design a cladding system. As a result it was found that cellular concrete can maintain most of the properties of the cladding materials and can be applied as a new sacrificial layer against the blast load. Extensive material tests are carried out to characterise the effect of ingredients and density on material properties of cellular concrete. Based on the experimental results, an empirical model is proposed which determines the plateau and densification regime of nominal stress-strain curve of the cellular concrete with different densities. The penetration resistance of cellular concrete with different densities under truncated, conical, flat and hemi-spherical solid indenters are studied experimental. By determining the deformation mechanism of cellular concrete under indentation with application of an X-Ray tomography image system, an analytical model is proposed to determine the resistance of cellular concrete under penetration of flat indenter. Experimental closed range blast tests are performed with 1kg and 3kg C4 explosive to determine the mitigation potential of cellular concrete against air blast load. Numerical modelling of the experimental blast test is carried out using Ansys LS-DYNA to evaluate the feasibility of the numerical modelling techniques to predict the response of cellular concrete against air blast load.
2

INVESTIGATION OF BLAST MITIGATION PROPERTIES OF CARBON AND POLYURETHANE BASED FOAMS

Toon, Bradley E. 01 January 2008 (has links)
Solid foams have been studied for years for their ability to mitigate damage from sudden impact. Small explosive attacks threaten to damage or destroy key structures in some parts of the world. A newly developed material, carbon foam, may offer the ability to mitigate the effects of such blasts. This project investigates the energy absorbing properties of carbon and polyurethane based foams in dynamic compression to illustrate their viability to protect concrete structures from the damaging effects of pressure waves from a small blast. Cellular solid mechanics fundamentals and a survey of the microscopic cellular structure of each type of foam are discussed. Experiments were performed in three strain rate regimes: low strain rate compression testing, middle strain rate impact testing, and high strain rate blast testing to reveal mechanical behavior. Experiments show a 7.62 cm (3”) thick hybrid composite layered foam sample can protect a concrete wall from a small blast.
3

Mitigation of Occupant Acceleration in a Mine-Resistant Ambush-Protected Vehicle Blast Event Using an Optimized Dual-Hull Approach

Miller, Adam 11 October 2012 (has links)
No description available.
4

Evaluating the Use of Ductile Envelope Connectors for Improved Blast Protection of Buildings

Lavarnway, Daniel L. 19 August 2013 (has links)
No description available.
5

The response of submerged structures to underwater blast

Schiffer, Andreas January 2013 (has links)
The response of submerged structures subject to loading by underwater blast waves is governed by complex interactions between the moving or deforming structure and the surrounding fluid and these phenomena need to be thoroughly understood in order to design structural components against underwater blast. This thesis has addressed the response of simple structural systems to blast loading in shallow or deep water environment. Analytical models have been developed to examine the one-dimensional response of both water-backed and air-backed submerged rigid plates, supported by linear springs and loaded by underwater shock waves. Cavitation phenomena as well as the effect of initial static fluid pressure are explicitly included in the models and their predictions were found in excellent agreement with detailed FE simulations. Then, a novel experimental apparatus has been developed, to reproduce controlled blast loading in initially pressurised liquids. It consists of a transparent water shock tube and allows observing the structural response as well as the propagation of cavitation fronts initiated by fluid-structure interaction in a blast event. This experimental technique was then employed to explore the one-dimensional response of monolithic plates, sandwich panels and double-walled structures subject to loading by underwater shock waves. The performed experiments provide great visual insight into the cavitation process and the experimental measurements were found to be in good agreement with analytical predictions and dynamic FE results. Finally, underwater blast loading of circular elastic plates has been investigated by theoretically modelling the main phenomena of dynamic plate deformation and fluid-structure interaction. In addition, underwater shock experiments have been performed on circular composite plates and the obtained measurements were found in good correlation with the corresponding analytical predictions. The validated analytical models were then used to determine the optimal designs of circular elastic plates which maximise the resistance to underwater blast.

Page generated in 0.1289 seconds