1 |
Bleb-driven chemotaxis in Dictyostelium discoideumZatulovskiy, Evgeny January 2013 (has links)
Migrating cells have two basic ways of extending their leading edge: by dendritic actin polymerization beneath the membrane, or by fluid pressure, which produces blebs. Most cells are believed to move using actin-driven projections, but in more physiological conditions, blebbing motility is also apparent. It has been shown that certain cells even can switch between these two modes of motility, although it is not known how this switch is triggered. Besides, it is unclear whether blebbing can be regulated by chemotactic stimuli, and generally, how blebbing is controlled in the cell. In this study I employed a popular model organism – Dictyostelium discoideum – to investigate the role of blebbing in chemotaxis. Here I confirm that in standard conditions Dictyostelium cells move by a combination of F-actin-driven protrusions and blebs. Blebbing is characterized by the rapid projection of hemispherical patches of plasma membrane at 2-4 times the speed of an actin-driven projection, and leaves transient scars of F-actin marking the original cortex in the base of blebs. I demonstrate that Dictyostelium cells can adjust their mode of movement according to the conditions: in a resistive environment they switch almost entirely to “bleb mode”. I show that in chemotaxing cells, blebs are mainly restricted to the leading edge, and they often lead the way when a cell is forced to re-orientate. Bleb location appears to be controlled directly by chemotactic gradients. To investigate how chemoattractant induces blebbing, I have screened signal transduction mutants for altered blebbing. I have found that blebbing is unaffected in many chemotactic mutants, but unexpectedly depends on PI3-kinases and two downstream PIP3-binding proteins of unknown function – PhdA and CRAC. I conclude that Dictyostelium cells move using a hybrid motor in which hydrostatic pressure-driven bleb formation is as important as F-actin-driven membrane extension, and that cells can change the balance between modes as required. I propose that blebbing motility of Dictyostelium cells is a direct response to mechanical resistance of environment. More generally, bleb-driven motility may be a ‘”high-force” mode of movement that is suited to penetrating tissues. Blebs are chemotactic and their induction may involve branches of the chemotactic signal transduction pathway distinct from F-actin regulation.
|
2 |
Asymmetric cell division intersects with cell geometry : a method to extrapolate and quantify geometrical parameters of sensory organ precursorsPapaluca, Arturo 11 1900 (has links)
La division cellulaire asymétrique (DCA) consiste en une division pendant laquelle des déterminants cellulaires sont distribués préférentiellement dans une des deux cellules filles. Par l’action de ces déterminants, la DCA générera donc deux cellules filles différentes. Ainsi, la DCA est importante pour générer la diversité cellulaire et pour maintenir l’homéostasie de certaines cellules souches. Pour induire une répartition asymétrique des déterminants cellulaires, le positionnement du fuseau mitotique doit être très bien contrôlé. Fréquemment ceci génère deux cellules filles de tailles différentes, car le fuseau mitotique n’est pas centré pendant la mitose, ce qui induit un positionnement asymétrique du sillon de clivage.
Bien qu’un complexe impliquant des GTPases hétérotrimériques et des protéines liant les microtubules au cortex ait été impliqué directement dans le positionnement du fuseau mitotique, le mécanisme exact induisant le positionnement asymétrique du fuseau durant la DCA n'est pas encore compris. Des études récentes suggèrent qu’une régulation asymétrique du cytosquelette d’actine pourrait être responsable de ce positionnement asymétrique du faisceau mitotique. Donc, nous émettons l'hypothèse que des contractions asymétriques d’actine pendant la division cellulaire pourraient déplacer le fuseau mitotique et le sillon de clivage pour créer une asymétrie cellulaire. Nos résultats préliminaires ont démontré que le blebbing cortical, qui est une indication de tension corticale et de contraction, se produit préférentiellement dans la moitié antérieure de cellule précurseur d’organes sensoriels (SOP) pendant le stage de télophase.
Nos données soutiennent l'idée que les petites GTPases de la famille Rho pourraient être impliqués dans la régulation du fuseau mitotique et ainsi contrôler la DCA des SOP. Les paramètres expérimentaux développés pour cette thèse, pour étudier la régulation de l’orientation et le positionnement du fuseau mitotique, ouvrirons de nouvelles avenues pour contrôler ce processus, ce qui pourrait être utile pour freiner la progression de cellules cancéreuses. Les résultats préliminaires de ce projet proposeront une manière dont les petites GTPases de la famille Rho peuvent être impliqués dans le contrôle de la division cellulaire asymétrique in vivo dans les SOP. Les modèles théoriques qui sont expliqués dans cette étude pourront servir à améliorer les méthodes quantitatives de biologie cellulaire de la DCA. / Asymmetric cell division (ACD) consists in a cellular division during which specific cell fate determinants are distributed preferentially in one daughter cell, which then differentiate from its sibling. Hence, ACD is important to generate cell diversity and is used to regulate stem cells homeostasis. For proper asymmetric distribution of cell fate determinants, the positioning of the mitotic spindle has to be tightly controlled. Frequently, this induces a cell size asymmetry, since the spindle is then not centered during mitosis, leading to an asymmetric positioning of the cleavage furrow.
Although small small GTPases have been shown to act directly on the spindle, the exact mechanism controlling spindle positioning during ACD is not understood. Recent studies suggest that an independent, yet uncharacterized pathway is involved in spindle positioning, which is likely to involve an asymmetric regulation of the actin cytoskeleton. Indeed, actin enables spindle anchoring to the cortex. Hence we hypothesize that asymmetric actin contractions during cytokinesis might displace the mitotic spindle and the cleavage furrow, leading to cell size asymmetry. Interestingly, from our preliminary results we observed that cortical blebbing, which is a read-out of cortical tension/contraction, preferentially occurs on the anterior side of the dividing sensory organ precursor (SOP) cells at telophase.
Our preliminary data support the idea that Rho small GTPases might be implicated in regulation of the mitotic spindle hence controlling asymmetric cell division of SOP cells. The experimental settings developed for this thesis, for studying regulation of the mitotic spindle orientation and positioning will serve as proof of concept of how geneticist and biochemist experts could design ways to control such process by different means in cancerous cells. The preliminary results from this project open novel insights on how the Rho small GTPases might be implicated in controlling asymmetric cell division hence their dynamics in vivo of such process during SOP development. Furthermore, the assays and the theoretical model developed in this study can be used as background that could serve to design improved quantitative experimental methods for cell biology synchronizing sub-networks of ACD mechanism.
|
Page generated in 0.0627 seconds