71 |
Géométrie et optimisation riemannienne pour la diagonalisation conjointe : application à la séparation de sources d'électroencéphalogrammes / Riemannian geometry and optimization for approximate joint diagonalization : application to source separation of electroencephalogramsBouchard, Florent 22 November 2018 (has links)
La diagonalisation conjointe approximée d’un ensemble de matrices permet de résoudre le problème de séparation aveugle de sources et trouve de nombreuses applications, notamment pour l’électroencéphalographie, une technique de mesure de l’activité cérébrale.La diagonalisation conjointe se formule comme un problème d’optimisation avec trois composantes : le choix du critère à minimiser, la contrainte de non-dégénérescence de la solution et l’algorithme de résolution.Les approches existantes considèrent principalement deux critères, les moindres carrés et la log-vraissemblance.Elles sont spécifiques à une contrainte et se restreignent à un seul type d’algorithme de résolution.Dans ce travail de thèse, nous proposons de formuler le problème de diagonalisation conjointe selon un modèle géométrique, qui généralise les travaux précédents et permet de définir des critères inédits, notamment liés à la théorie de l’information.Nous proposons également d’exploiter l’optimisation riemannienne et nousdéfinissons un ensemble d’outils qui permet de faire varier les trois composantes indépendamment, créant ainsi de nouvelles méthodes et révélant l’influence des choix de modélisation.Des expériences numériques sur des données simulées et sur des enregistrements électroencéphalographiques montrent que notre approche par optimisation riemannienne donne des résultats compétitifs par rapport aux méthodes existantes.Elles indiquent aussi que les deux critères traditionnels ne sont pas les meilleurs dans toutes les situations. / The approximate joint diagonalisation of a set of matrices allows the solution of the blind source separation problem and finds several applications, for instance in electroencephalography, a technique for measuring brain activity.The approximate joint diagonalisation is formulated as an optimization problem with three components: the choice of the criterion to be minimized, the non-degeneracy constraint on the solution and the solving algorithm.Existing approaches mainly consider two criteria, the least-squares and the log-likelihood.They are specific to a constraint and are limited to only one type of solving algorithms.In this thesis, we propose to formulate the approximate joint diagonalisation problem in a geometrical fashion, which generalizes previous works and allows the definition of new criteria, particularly those linked to information theory.We also propose to exploit Riemannian optimisation and we define tools that allow to have the three components varying independently, creating in this way new methods and revealing the influence of the choice of the model.Numerical experiments on simulated data as well as on electroencephalographic recordings show that our approach by means of Riemannian optimisation gives results that are competitive as compared to existing methods.They also indicate that the two traditional criteria do not perform best in all situations.
|
72 |
Blind Acoustic Feedback Cancellation for an AUVFrick, Hampus January 2023 (has links)
SAAB has developed an autonomous underwater vehicle that can mimic a conventional submarine for military fleets to exercise anti-submarine warfare. The AUV actively emits amplified versions of received sonar pulses to create the illusion of being a larger object. To prevent acoustic feedback, the AUV must distinguish between the sound to be actively responded to and its emitted signal. This master thesis has examined techniques aimed at preventing the AUV from responding to previously emitted signals to avoid acoustical feedback, without relying on prior knowledge of either the received signal or the signal emitted by the AUV. The two primary types of algorithms explored for this problem include blind source separation and adaptive filtering. The adaptive filters based on Leaky Least Mean Square and Kalman have shown promising results in attenuating the active response from the received signal. The adaptive filters utilize the fact that a certain hydrophone primarily receives the active response. This hydrophone serves as an estimate of the active response since the signal it captures is considered unknown and is to be removed. The techniques based on blind source separation have utilized the recordings of three hydrophones placed at various locations of the AUV to separate and estimate the received signal from the one emitted by the AUV. The results have demonstrated that neither of the reviewed methods is suitable for implementation on the AUV. The hydrophones are situated at a considerable distance from each other, resulting in distinct time delays between the reception of the two signals. This is usually referred to as a convolutive mixture. This is commonly solved using the frequency domain to transform the convolutive mixture to an instantaneous mixture. However, the fact that the signals share the same frequency spectrum and are adjacent in time has proven highly challenging.
|
73 |
Sinbad Automation Of Scientific Process: From Hidden Factor Analysis To Theory SynthesisKursun, Olcay 01 January 2004 (has links)
Modern science is turning to progressively more complex and data-rich subjects, which challenges the existing methods of data analysis and interpretation. Consequently, there is a pressing need for development of ever more powerful methods of extracting order from complex data and for automation of all steps of the scientific process. Virtual Scientist is a set of computational procedures that automate the method of inductive inference to derive a theory from observational data dominated by nonlinear regularities. The procedures utilize SINBAD – a novel computational method of nonlinear factor analysis that is based on the principle of maximization of mutual information among non-overlapping sources (Imax), yielding higherorder features of the data that reveal hidden causal factors controlling the observed phenomena. One major advantage of this approach is that it is not dependent on a particular choice of learning algorithm to use for the computations. The procedures build a theory of the studied subject by finding inferentially useful hidden factors, learning interdependencies among its variables, reconstructing its functional organization, and describing it by a concise graph of inferential relations among its variables. The graph is a quantitative model of the studied subject, capable of performing elaborate deductive inferences and explaining behaviors of the observed variables by behaviors of other such variables and discovered hidden factors. The set of Virtual Scientist procedures is a powerful analytical and theory-building tool designed to be used in research of complex scientific problems characterized by multivariate and nonlinear relations.
|
74 |
Speech Intelligibility in Radio Broadcasts : A Case Study Using Dynamic Range Control and Blind Source SeparationLinder Nilsson, Martin January 2022 (has links)
Creating the optimal balance between dialogue level and ambient sound is extremely important in media productions. This process is however inherently difficult due to that people’s requirements and preferences are not uniform. Speech intelligibility is affected by a multitude of factors, such as hearing impairments, audio quality and listening equipment. Recent EU directives on accessibility calls for improved audio clarity features for broadcast content. To accommodate these requirements, the broadcast industry needs to develop functionality for enhanced dialogue clarity and, optimally, put listeners in control of these features. Many speech enhancement techniques exist, this paper uses Sveriges Radio as a case study to evaluate several of these methods. A study on enhancing speech intelligibility through the use of dynamic range control and blind source separation is presented and results show that both methods can have a positive impact. Dynamic range control proves efficient in increasing intelligibility by reducing dynamic variations. It is also well suited to implement in an existing two-channel infrastructure, common in the radio industry, due to being included in novel audio codecs. Blind source separation is found to best be used in moderation due to the risk of audio quality degradation, and is primarily suited for prerecorded material on account of the processing time needed. / Att skapa en optimal balans mellan dialognivå och bakgrundsljud är oerhört viktigt i medieproduktioner. Detta är dock i sig komplicerat på grund av människors olika förutsättningar och preferenser. Taluppfattbarheten påverkas av en mängd faktorer, såsom hörselnedsättningar, ljudkvalitet och lyssningsutrustning. Nya EU-direktiv om tillgänglighet ställer krav på förbättrade funktioner för ljudtydlighet i etermedia. För att tillgodose dessa krav behöver branschen utveckla funktionalitet för ökad dialogtydlighet och företrädesvis också stöd för att lyssnarna själva ska kunna styra dessa funktioner. Det finns många tekniker för att öka taluppfattbarheten, denna artikel använder Sveriges Radio som fallstudie för att utvärdera flera av dessa metoder. En studie om möjligheten till förbättrad taluppfattbarhet genom kontroll av ljudets dynamik (dynamic range control) och blindkallseparation (blind source separation) presenteras, och resultaten visar att båda metoderna kan ha en positiv inverkan. Dynamisk kontroll visar sig vara effektiv för att öka taluppfattbarheten genom att jämna ut dynamiskt innehåll. Tekniken lämpar sig också bra för implementering i en befintlig tvåkanals-infrastruktur, vilket är vanligt inom radioindustrin, på grund av att den inkluderas i nya ljud-kodekar. Blindkallseparation används bäst med måtta på grund av risk for ljudkvalitetsförsämring och är i första hand lämpad för förinspelat material på grund av den processeringstid som behövs.
|
75 |
An improved adaptive filtering approach for removing artifact from the electroencephalogramEstepp, Justin Ronald 02 June 2015 (has links)
No description available.
|
76 |
RFI Mitigation and Discrete Digital Signal Processing RFSoC Algorithm Implementations for Radio Astronomy and Wideband Communication SystemsWard, Devon Christopher 28 March 2024 (has links) (PDF)
Due to the massive increase of active transmitters broadcasting over wideband frequencies, such as 5G wireless systems, LEO/MEO satellites, satellite constellations, and the increase of IoT devices in the average home, the radio frequency spectrum is becoming more and more congested by interference. Passive receivers face additional challenges due to the growing use of wideband frequency transmissions aimed at boosting communication system throughput. As a result, passive receivers must adopt more robust and intricate techniques to mitigate radio frequency interference. A proposed RFI removal system, known as the true time delay Hadamard projection algorithm, has been introduced in previous work to eliminate a single RFI source while preserving a narrowband signal of interest. An RF frontend is developed to assess the effectiveness of the Hadamard projection algorithm implemented on an RFSoC ZCU216. Additionally, the TTD Hadamard projection algorithm is expanded to enable the cancellation of multiple RFI sources rather than just a single source for a uniform linear array and a uniform rectangular array. Over-the-air tests are conducted to verify the performance of the interference cancellation algorithms and demonstrate the algorithms' ability to preserve the signals of interest while removing the wideband interference. Multiple algorithms are proposed to estimate the time delays used by the interference cancellation algorithm to effectively eliminate wideband interference. These algorithms address diverse scenarios encompassing interference sources ranging from strong to weak SNR. Detailed reports of algorithm performance provide insights into their effectiveness and suitability across specific interference conditions.
|
77 |
Integration of magnetic resonance spectroscopic imaging into the radiotherapy treatment planning / Intégration des cartes métaboliques d'imagerie spectroscopique à la planification de radiothérapieLaruelo Fernandez, Andrea 24 May 2016 (has links)
L'objectif de cette thèse est de proposer de nouveaux algorithmes pour surmonter les limitations actuelles et de relever les défis ouverts dans le traitement de l'imagerie spectroscopique par résonance magnétique (ISRM). L'ISRM est une modalité non invasive capable de fournir la distribution spatiale des composés biochimiques (métabolites) utilisés comme biomarqueurs de la maladie. Les informations fournies par l'ISRM peuvent être utilisées pour le diagnostic, le traitement et le suivi de plusieurs maladies telles que le cancer ou des troubles neurologiques. Cette modalité se montre utile en routine clinique notamment lorsqu'il est possible d'en extraire des informations précises et fiables. Malgré les nombreuses publications sur le sujet, l'interprétation des données d'ISRM est toujours un problème difficile en raison de différents facteurs tels que le faible rapport signal sur bruit des signaux, le chevauchement des raies spectrales ou la présence de signaux de nuisance. Cette thèse aborde le problème de l'interprétation des données d'ISRM et la caractérisation de la rechute des patients souffrant de tumeurs cérébrales. Ces objectifs sont abordés à travers une approche méthodologique intégrant des connaissances a priori sur les données d'ISRM avec une régularisation spatio-spectrale. Concernant le cadre applicatif, cette thèse contribue à l'intégration de l'ISRM dans le workflow de traitement en radiothérapie dans le cadre du projet européen SUMMER (Software for the Use of Multi-Modality images in External Radiotherapy) financé par la Commission européenne (FP7-PEOPLE-ITN). / The aim of this thesis is to propose new algorithms to overcome the current limitations and to address the open challenges in the processing of magnetic resonance spectroscopic imaging (MRSI) data. MRSI is a non-invasive modality able to provide the spatial distribution of relevant biochemical compounds (metabolites) commonly used as biomarkers of disease. Information provided by MRSI can be used as a valuable insight for the diagnosis, treatment and follow-up of several diseases such as cancer or neurological disorders. Obtaining accurate and reliable information from in vivo MRSI signals is a crucial requirement for the clinical utility of this technique. Despite the numerous publications on the topic, the interpretation of MRSI data is still a challenging problem due to different factors such as the low signal-to-noise ratio (SNR) of the signals, the overlap of spectral lines or the presence of nuisance components. This thesis addresses the problem of interpreting MRSI data and characterizing recurrence in tumor brain patients. These objectives are addressed through a methodological approach based on novel processing methods that incorporate prior knowledge on the MRSI data using a spatio-spectral regularization. As an application, the thesis addresses the integration of MRSI into the radiotherapy treatment workflow within the context of the European project SUMMER (Software for the Use of Multi-Modality images in External Radiotherapy) founded by the European Commission (FP7-PEOPLE-ITN framework).
|
78 |
Optimization framework for large-scale sparse blind source separation / Stratégies d'optimisation pour la séparation aveugle de sources parcimonieuses grande échelleKervazo, Christophe 04 October 2019 (has links)
Lors des dernières décennies, la Séparation Aveugle de Sources (BSS) est devenue un outil de premier plan pour le traitement de données multi-valuées. L’objectif de ce doctorat est cependant d’étudier les cas grande échelle, pour lesquels la plupart des algorithmes classiques obtiennent des performances dégradées. Ce document s’articule en quatre parties, traitant chacune un aspect du problème: i) l’introduction d’algorithmes robustes de BSS parcimonieuse ne nécessitant qu’un seul lancement (malgré un choix d’hyper-paramètres délicat) et fortement étayés mathématiquement; ii) la proposition d’une méthode permettant de maintenir une haute qualité de séparation malgré un nombre de sources important: iii) la modification d’un algorithme classique de BSS parcimonieuse pour l’application sur des données de grandes tailles; et iv) une extension au problème de BSS parcimonieuse non-linéaire. Les méthodes proposées ont été amplement testées, tant sur données simulées que réalistes, pour démontrer leur qualité. Des interprétations détaillées des résultats sont proposées. / During the last decades, Blind Source Separation (BSS) has become a key analysis tool to study multi-valued data. The objective of this thesis is however to focus on large-scale settings, for which most classical algorithms fail. More specifically, it is subdivided into four sub-problems taking their roots around the large-scale sparse BSS issue: i) introduce a mathematically sound robust sparse BSS algorithm which does not require any relaunch (despite a difficult hyper-parameter choice); ii) introduce a method being able to maintain high quality separations even when a large-number of sources needs to be estimated; iii) make a classical sparse BSS algorithm scalable to large-scale datasets; and iv) an extension to the non-linear sparse BSS problem. The methods we propose are extensively tested on both simulated and realistic experiments to demonstrate their quality. In-depth interpretations of the results are proposed.
|
79 |
Analyse en composantes indépendantes avec une matrice de mélange éparseBillette, Marc-Olivier 06 1900 (has links)
L'analyse en composantes indépendantes (ACI) est une méthode d'analyse statistique qui consiste à exprimer les données observées (mélanges de sources) en une transformation linéaire de variables latentes (sources) supposées non gaussiennes et mutuellement indépendantes. Dans certaines applications, on suppose que les mélanges de sources peuvent être groupés de façon à ce que ceux appartenant au même groupe soient fonction des mêmes sources. Ceci implique que les coefficients de chacune des colonnes de la matrice de mélange peuvent être regroupés selon ces mêmes groupes et que tous les coefficients de certains de ces groupes soient nuls. En d'autres mots, on suppose que la matrice de mélange est éparse par groupe. Cette hypothèse facilite l'interprétation et améliore la précision du modèle d'ACI. Dans cette optique, nous proposons de résoudre le problème d'ACI avec une matrice de mélange éparse par groupe à l'aide d'une méthode basée sur le LASSO par groupe adaptatif, lequel pénalise la norme 1 des groupes de coefficients avec des poids adaptatifs. Dans ce mémoire, nous soulignons l'utilité de notre méthode lors d'applications en imagerie cérébrale, plus précisément en imagerie par résonance magnétique. Lors de simulations, nous illustrons par un exemple l'efficacité de notre méthode à réduire vers zéro les groupes de coefficients non-significatifs au sein de la matrice de mélange. Nous montrons aussi que la précision de la méthode proposée est supérieure à celle de l'estimateur du maximum de la vraisemblance pénalisée par le LASSO adaptatif dans le cas où la matrice de mélange est éparse par groupe. / Independent component analysis (ICA) is a method of statistical analysis where the main goal is to express the observed data (mixtures) in a linear transformation of latent variables (sources) believed to be non-Gaussian and mutually independent. In some applications, the mixtures can be grouped so that the mixtures belonging to the same group are function of the same sources. This implies that the coefficients of each column of the mixing matrix can be grouped according to these same groups and that all the coefficients of some of these groups are zero. In other words, we suppose that the mixing matrix is sparse per group. This assumption facilitates the interpretation and improves the accuracy of the ICA model. In this context, we propose to solve the problem of ICA with a sparse group mixing matrix by a method based on the adaptive group LASSO. The latter penalizes the 1-norm of the groups of coefficients with adaptive weights. In this thesis, we point out the utility of our method in applications in brain imaging, specifically in magnetic resonance imaging. Through simulations, we illustrate with an example the effectiveness of our method to reduce to zero the non-significant groups of coefficients within the mixing matrix. We also show that the accuracy of the proposed method is greater than the one of the maximum likelihood estimator with an adaptive LASSO penalization in the case where the mixing matrix is sparse per group.
|
80 |
Cyclostationary analysis : cycle frequency estimation and source separation / Analyse cyclostationnaire : estimation des fréquences cycliques et séparation de sourcesChe Viet, Nhat Anh 28 October 2011 (has links)
Le problème de séparation aveugle de sources a but de retrouver un ensemble des sources signaux statistiquement indépendants à partir seulement d’un ensemble des observations du capteur. Ces observations peuvent être modélisées comme un mélanges linéaires instantané ou convolutifs de sources. Dans cette thèse, les sources signaux sont supposées être cyclostationnaire où leurs fréquences cycles peuvent être connues ou inconnu par avance. Premièrement, nous avons établi des relations entre le spectre, spectre de puissance d’un signal source et leurs composants, puis nous avons proposé deux nouveaux algorithmes pour estimer sa fréquences cycliques. Ensuite, pour la séparation aveugle de sources en mélanges instantanés, nous présentons quatre algorithmes basés sur diagonalisation conjoint approchées orthogonale (ou non-orthogonales) d’une famille des matrices cycliques multiples moment temporel, or l’approche matricielle crayon pour extraire les sources signaux. Nous introduisons aussi et prouver une nouvelle condition identifiabilité pour montrer quel type de sources cyclostationnaires d’entrée peuvent être séparées basées sur des statistiques cyclostationnarité à l’ordre deux. Pour la séparation aveugle de sources en mélanges convolutifs, nous présentons un algorithme en deux étapes basées sur une approche dans le domaine temporel pour récupérer les signaux source. Les simulations numériques sont utilisés dans cette thèse pour démontrer l’efficacité de nos approches proposées, et de comparer les performances avec leurs méthodes précédentes / Blind source separation problem aims to recover a set of statistically independent source signals from a set of sensor observations. These observations can be modeled as an instantaneous or convolutive mixture of the same sources. In this dissertation, the source signals are assumed to be cyclostationary where their cycle frequencies may be known or unknown a priori. First, we establish relations between the spectrum, power spectrum of a source signal and its component, then we propose two novel algorithms to estimate its cycle frequencies. Next, for blind separation of instantaneous mixtures of sources, we present four algorithms based on orthogonal (or non-orthogonal) approximate diagonalization of the multiple cyclic temporal moment matrices, and the matrix pencil approach to extract the source signal. We also introduce and prove a new identifiability condition to show which kind of input cyclostationary sources can be separated based on second-order cyclostationarity statistics. For blind separation of convolutive mixtures of sources signal or blind deconvolution of FIR MIMO systems, we present a two-steps algorithm based on time domain approach for recovering the source signals. Numerical simulations are used throughout this thesis to demonstrate the effectiveness of our proposed approaches, and compare theirs performances with previous methods
|
Page generated in 0.1301 seconds