91 |
Modélisation gaussienne de rang plein des mélanges audio convolutifs appliquée à la séparation de sources.Duong, Quang-Khanh-Ngoc 15 November 2011 (has links) (PDF)
Nous considérons le problème de la séparation de mélanges audio réverbérants déterminés et sous-déterminés, c'est-à-dire l'extraction du signal de chaque source dans un mélange multicanal. Nous proposons un cadre général de modélisation gaussienne où la contribution de chaque source aux canaux du mélange dans le domaine temps-fréquence est modélisée par un vecteur aléatoire gaussien de moyenne nulle dont la covariance encode à la fois les caractéristiques spatiales et spectrales de la source. A n de mieux modéliser la réverbération, nous nous aff ranchissons de l'hypothèse classique de bande étroite menant à une covariance spatiale de rang 1 et nous calculons la borne théorique de performance atteignable avec une covariance spatiale de rang plein. Les ré- sultats expérimentaux indiquent une augmentation du rapport Signal-à-Distorsion (SDR) de 6 dB dans un environnement faiblement à très réverbérant, ce qui valide cette généralisation. Nous considérons aussi l'utilisation de représentations temps-fréquence quadratiques et de l'échelle fréquentielle auditive ERB (equivalent rectangular bandwidth) pour accroître la quantité d'information exploitable et décroître le recouvrement entre les sources dans la représentation temps-fréquence. Après cette validation théorique du cadre proposé, nous nous focalisons sur l'estimation des paramètres du modèle à partir d'un signal de mélange donné dans un scénario pratique de séparation aveugle de sources. Nous proposons une famille d'algorithmes Expectation-Maximization (EM) pour estimer les paramètres au sens du maximum de vraisemblance (ML) ou du maximum a posteriori (MAP). Nous proposons une famille d'a priori de position spatiale inspirée par la théorie de l'acoustique des salles ainsi qu'un a priori de continuité spatiale. Nous étudions aussi l'utilisation de deux a priori spectraux précédemment utilisés dans un contexte monocanal ou multicanal de rang 1: un a priori de continuité spatiale et un modèle de factorisation matricielle positive (NMF). Les résultats de séparation de sources obtenus par l'approche proposée sont comparés à plusieurs algorithmes de base et de l'état de l'art sur des mélanges simulés et sur des enregistrements réels dans des scénarios variés.
|
92 |
Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processingZiehe, Andreas January 2005 (has links)
<p>This thesis is concerned with the solution of the blind source
separation problem (BSS). The BSS problem occurs frequently in various
scientific and technical applications. In essence, it consists in
separating meaningful underlying components out of a mixture of a
multitude of superimposed signals.</p>
<P>
In the recent research literature there are two related approaches to
the BSS problem: The first is known as Independent Component Analysis (ICA),
where the goal is to transform the data such that the components
become as independent as possible. The second is based on the notion
of diagonality of certain characteristic matrices derived from the
data. Here the goal is to transform the matrices such that they become
as diagonal as possible. In this thesis we study
the latter method of approximate joint diagonalization (AJD) to
achieve a solution of the BSS problem. After an introduction to the
general setting, the thesis provides an overview on particular choices
for the set of target matrices that can be used for BSS by joint
diagonalization.</p>
<P>
As the main contribution of the thesis, new algorithms for
approximate joint diagonalization of several matrices with
non-orthogonal transformations are developed.</p>
<P>
These newly developed algorithms will be tested on synthetic
benchmark datasets and compared to other previous diagonalization
algorithms.</p>
<P>
Applications of the BSS methods to biomedical signal processing are
discussed and exemplified with real-life data sets of multi-channel
biomagnetic recordings.</p> / <p>Diese Arbeit befasst sich mit der Lösung des Problems der blinden
Signalquellentrennung (BSS). Das BSS Problem tritt häufig in vielen
wissenschaftlichen und technischen Anwendungen auf. Im Kern besteht das
Problem darin, aus einem Gemisch von überlagerten Signalen die
zugrundeliegenden Quellsignale zu extrahieren.</p>
<P>
In wissenschaftlichen Publikationen zu diesem Thema werden
hauptsächlich zwei Lösungsansätze verfolgt:</p>
<P>
Ein Ansatz ist die sogenannte "Analyse der unabhängigen
Komponenten", die zum Ziel hat, eine lineare Transformation <B>V</B> der
Daten <B>X</B> zu finden, sodass die Komponenten U<sub>n</sub> der transformierten
Daten <B>U</B> = <B> V X</B> (die sogenannten "independent components") so
unabhängig wie möglich sind.
Ein anderer Ansatz beruht auf einer simultanen Diagonalisierung
mehrerer spezieller Matrizen, die aus den Daten gebildet werden.
Diese Möglichkeit der Lösung des Problems der blinden
Signalquellentrennung bildet den Schwerpunkt dieser Arbeit.</p>
<P>
Als Hauptbeitrag der vorliegenden Arbeit präsentieren wir neue
Algorithmen zur simultanen Diagonalisierung mehrerer Matrizen mit
Hilfe einer nicht-orthogonalen Transformation.</p>
<P>
Die neu entwickelten Algorithmen werden anhand von numerischen
Simulationen getestet und mit bereits bestehenden
Diagonalisierungsalgorithmen verglichen. Es zeigt sich, dass unser
neues Verfahren sehr effizient und leistungsfähig ist. Schließlich
werden Anwendungen der BSS Methoden auf Probleme der biomedizinischen
Signalverarbeitung erläutert und anhand von realistischen
biomagnetischen Messdaten wird die Nützlichkeit in der explorativen
Datenanalyse unter Beweis gestellt.</p>
|
93 |
Analyse en composantes indépendantes avec une matrice de mélange éparseBillette, Marc-Olivier 06 1900 (has links)
L'analyse en composantes indépendantes (ACI) est une méthode d'analyse statistique qui consiste à exprimer les données observées (mélanges de sources) en une transformation linéaire de variables latentes (sources) supposées non gaussiennes et mutuellement indépendantes. Dans certaines applications, on suppose que les mélanges de sources peuvent être groupés de façon à ce que ceux appartenant au même groupe soient fonction des mêmes sources. Ceci implique que les coefficients de chacune des colonnes de la matrice de mélange peuvent être regroupés selon ces mêmes groupes et que tous les coefficients de certains de ces groupes soient nuls. En d'autres mots, on suppose que la matrice de mélange est éparse par groupe. Cette hypothèse facilite l'interprétation et améliore la précision du modèle d'ACI. Dans cette optique, nous proposons de résoudre le problème d'ACI avec une matrice de mélange éparse par groupe à l'aide d'une méthode basée sur le LASSO par groupe adaptatif, lequel pénalise la norme 1 des groupes de coefficients avec des poids adaptatifs. Dans ce mémoire, nous soulignons l'utilité de notre méthode lors d'applications en imagerie cérébrale, plus précisément en imagerie par résonance magnétique. Lors de simulations, nous illustrons par un exemple l'efficacité de notre méthode à réduire vers zéro les groupes de coefficients non-significatifs au sein de la matrice de mélange. Nous montrons aussi que la précision de la méthode proposée est supérieure à celle de l'estimateur du maximum de la vraisemblance pénalisée par le LASSO adaptatif dans le cas où la matrice de mélange est éparse par groupe. / Independent component analysis (ICA) is a method of statistical analysis where the main goal is to express the observed data (mixtures) in a linear transformation of latent variables (sources) believed to be non-Gaussian and mutually independent. In some applications, the mixtures can be grouped so that the mixtures belonging to the same group are function of the same sources. This implies that the coefficients of each column of the mixing matrix can be grouped according to these same groups and that all the coefficients of some of these groups are zero. In other words, we suppose that the mixing matrix is sparse per group. This assumption facilitates the interpretation and improves the accuracy of the ICA model. In this context, we propose to solve the problem of ICA with a sparse group mixing matrix by a method based on the adaptive group LASSO. The latter penalizes the 1-norm of the groups of coefficients with adaptive weights. In this thesis, we point out the utility of our method in applications in brain imaging, specifically in magnetic resonance imaging. Through simulations, we illustrate with an example the effectiveness of our method to reduce to zero the non-significant groups of coefficients within the mixing matrix. We also show that the accuracy of the proposed method is greater than the one of the maximum likelihood estimator with an adaptive LASSO penalization in the case where the mixing matrix is sparse per group.
|
94 |
Independent Component Analysis Enhancements for Source Separation in Immersive Audio EnvironmentsZhao, Yue 01 January 2013 (has links)
In immersive audio environments with distributed microphones, Independent Component Analysis (ICA) can be applied to uncover signals from a mixture of other signals and noise, such as in a cocktail party recording. ICA algorithms have been developed for instantaneous source mixtures and convolutional source mixtures. While ICA for instantaneous mixtures works when no delays exist between the signals in each mixture, distributed microphone recordings typically result various delays of the signals over the recorded channels. The convolutive ICA algorithm should account for delays; however, it requires many parameters to be set and often has stability issues. This thesis introduces the Channel Aligned FastICA (CAICA), which requires knowledge of the source distance to each microphone, but does not require knowledge of noise sources. Furthermore, the CAICA is combined with Time Frequency Masking (TFM), yielding even better SOI extraction even in low SNR environments. Simulations were conducted for ranking experiments tested the performance of three algorithms: Weighted Beamforming (WB), CAICA, CAICA with TFM. The Closest Microphone (CM) recording is used as a reference for all three. Statistical analyses on the results demonstrated superior performance for the CAICA with TFM. The algorithms were applied to experimental recordings to support the conclusions of the simulations. These techniques can be deployed in mobile platforms, used in surveillance for capturing human speech and potentially adapted to biomedical fields.
|
95 |
Représentations parcimonieuse et applications en communication numériqueAïssa-El-Bey, Abdeldjalil 30 November 2012 (has links) (PDF)
L'objet de ce document est de rapporter une partie des travaux de recherche auxquels j'ai contribué durant les cinq dernières années. Le but visé n'est pas de faire une synthèse exhaustive des travaux réalisés sur cette période mais d'en sélectionner certains d'entre eux pour leur pertinence et leur cohérence. Les travaux rapportés dans ce manuscrit concernent l'exploitation des représentations parcimonieuses dans les applications en télécommunication. Depuis mes travaux de thèse, où j'ai abordé le problème de la séparation aveugle de sources en exploitant le caractère parcimonieux des signaux audio, mes travaux gravitent autour des représentations parcimonieuses et leurs applications en communication numérique. En effet, après avoir exploité la propriété de parcimonie des signaux audio dans le domaine temps-fréquence d'un point de vue structurel, je me suis intéressé aux mesures de parcimonie et aux problèmes inverses régularisés. Cette réflexion m'a poussé à entreprendre l'étude sur l'exploitation de la parcimonie pour l'estimation aveugle de canaux de communication. En particulier, l'identification aveugle de canaux parcimonieux dans les systèmes Single-Input Multiple-Output (SIMO). Une extension de ces techniques a été développée pour les systèmes Multiple-Input Multiple-Output MIMO OFDM où le cas semi-aveugle a été traité. L'identification de canaux pour les communications étant étroitement liée aux signaux à alphabet fini. Je me suis par conséquent intéressé à l'exploitation de cette caractéristique des signaux de communication (signaux à alphabet fini) par le biais des représentations parcimonieuses afin de résoudre certains problèmes inverses difficiles. Enfin, j'ai abordé le problème de détection de signaux en utilisant des méthodes de tests statistiques basées sur l'hypothèse de parcimonie des signaux observés. Ces méthodes ont trouvés un cadre applicatif dans les communications sans fil, la guerre électronique et la séparation aveugle de sources.
|
96 |
Représentations parcimonieuses et applications en communication numériqueAISSA EL BEY, Abdeldjalil 30 November 2012 (has links) (PDF)
L'objet de ce document est de rapporter une partie des travaux de recherche auxquels j'ai contribué durant les cinq dernières années. Le but visé n'est pas de faire une synthèse exhaustive des travaux réalisés sur cette période mais d'en sélectionner certains d'entre eux pour leur pertinence et leur cohérence. Les travaux rapportés dans ce manuscrit concernent l'exploitation des représentations parcimonieuses dans les applications en télécommunication. Depuis mes travaux de thèse, où j'ai abordé le problème de la séparation aveugle de sources en exploitant le caractère parcimonieux des signaux audio, mes travaux gravitent autour des représentations parcimonieuses et leurs applications en communication numérique. En effet, après avoir exploité la propriété de parcimonie des signaux audio dans le domaine temps-fréquence d'un point de vue structurel, je me suis intéressé aux mesures de parcimonie et aux problèmes inverses régularisés. Cette réflexion m'a poussé à entreprendre l'étude sur l'exploitation de la parcimonie pour l'estimation aveugle de canaux de communication. En particulier, l'identification aveugle de canaux parcimonieux dans les systèmes Single-Input Multiple-Output (SIMO). Une extension de ces techniques a été développée pour les systèmes Multiple-Input Multiple-Output MIMO OFDM où le cas semi-aveugle a été traité. L'identification de canaux pour les communications étant étroitement liée aux signaux à alphabet fini. Je me suis par conséquent intéressé à l'exploitation de cette caractéristique des signaux de communication (signaux à alphabet fini) par le biais des représentations parcimonieuses afin de résoudre certains problèmes inverses difficiles. Enfin, j'ai abordé le problème de détection de signaux en utilisant des méthodes de tests statistiques basées sur l'hypothèse de parcimonie des signaux observés. Ces méthodes ont trouvés un cadre applicatif dans les communications sans fil, la guerre électronique et la séparation aveugle de sources.
|
97 |
Array Signal Processing for Beamforming and Blind Source SeparationMoazzen, Iman 30 April 2013 (has links)
A new broadband beamformer composed of nested arrays (NAs), multi-dimensional (MD) filters, and multirate techniques is proposed for both linear and planar arrays. It is shown that this combination results in frequency-invariant response. For a given number of sensors, the advantage of using NAs is that the effective aperture for low temporal frequencies is larger than in the case of using uniform arrays. This leads to high spatial selectivity for low frequencies. For a given aperture size, the proposed beamformer can be implemented with significantly fewer sensors and less computation than uniform arrays with a slight deterioration in performance. Taking advantage of the Noble identity and polyphase structures, the proposed method can be efficiently implemented. Simulation results demonstrate the good performance of the proposed beamformer in terms of frequency-invariant response and computational requirements.
The broadband beamformer requires a filter bank with a non-compatible set of sampling rates which is challenging to be designed. To address this issue, a filter bank design approach is presented. The approach is based on formulating the design problem as an optimization problem with a performance index which consists of a term depending on perfect reconstruction (PR) and a term depending on the magnitude specifications of the analysis filters. The design objectives are to achieve almost perfect reconstruction (PR) and have the analysis filters satisfying some prescribed frequency specifications. Several design examples are considered to show the satisfactory performance of the proposed method.
A new blind multi-stage space-time equalizer (STE) is proposed which can separate narrowband sources from a mixed signal. Neither the direction of arrival (DOA) nor a training sequence is assumed to be available for the receiver. The beamformer and equalizer are jointly updated to combat both co-channel interference (CCI) and inter-symbol interference (ISI) effectively. Using subarray beamformers, the DOA, possibly time-varying, of the captured signal is estimated and tracked. The estimated DOA is used by the beamformer to provide strong CCI cancellation. In order to alleviate inter-stage error propagation significantly, a mean-square-error sorting algorithm is used which assigns detected sources to different stages according to the reconstruction error at different stages. Further, to speed up the convergence, a simple-yet-efficient DOA estimation algorithm is proposed which can provide good initial DOAs for the multi-stage STE. Simulation results illustrate the good performance of the proposed STE and show that it can effectively deal with changing DOAs and time variant channels. / Graduate / 0544 / imanmoaz@uvic.ca
|
98 |
Decentralized Ambient System Identification of StructuresSadhu, Ayan 09 May 2013 (has links)
Many of the existing ambient modal identification methods based on vibration data process information centrally to calculate the modal properties. Such methods demand relatively large memory and processing capabilities to interrogate the data. With the recent advances in wireless sensor technology, it is now possible to process information on the sensor itself. The decentralized information so obtained from individual sensors can be combined to estimate the global modal information of the structure. The main objective of this thesis is to present a new class of decentralized algorithms that can address the limitations stated above.
The completed work in this regard involves casting the identification problem within the framework of underdetermined blind source separation (BSS). Time-frequency transformations of measurements are carried out, resulting in a sparse representation of the signals. Stationary wavelet packet transform (SWPT) is used as the primary means to obtain a sparse representation in the time-frequency domain. Several partial setups are used to obtain the partial modal information, which are then combined to obtain the global structural mode information.
Most BSS methods in the context of modal identification assume that the excitation is white and do not contain narrow band excitation frequencies. However, this assumption is not satisfied in many situations (e.g., pedestrian bridges) when the excitation is a superposition of narrow-band harmonic(s) and broad-band disturbance. Under such conditions, traditional BSS methods yield sources (modes) without any indication as to whether the identified source(s) is a system or an excitation harmonic. In this research, a novel under-determined BSS algorithm is developed involving statistical characterization of the sources which are used to delineate the sources corresponding to external disturbances versus intrinsic modes of the system. Moreover, the issue of computational burden involving an over-complete dictionary of sparse bases is alleviated through a new underdetermined BSS method based on a tensor algebra tool called PARAllel FACtor (PARAFAC) decomposition. At the core of this method, the wavelet packet decomposition coefficients are used to form a covariance tensor, followed by PARAFAC tensor decomposition to separate the modal responses. Finally, the proposed methods are validated using measurements obtained from both wired and wireless sensors on laboratory scale and full scale buildings and bridges.
|
99 |
Apprendre un art ensemble : étude longitudinale d’enregistrements simultanés en électroencéphalographie lors de performances musicales / Learning and practising music together : a longitudinal EEG-hyperscanning studyAcquadro, Michaël 31 March 2016 (has links)
L’objectif de notre recherche est de comprendre les bases cérébrales de l’interaction sociale dans un contexte de performance musicale grâce à des outils issus des neurosciences (électroencéphalographie : EEG) et du traitement du signal. Ce manuscrit présente tout d’abord un état de l’art des études récentes dans le domaine de l’hyperscanning. Nous offrons une réflexion sur les prérequis et la méthodologie à adopter pour concevoir une expérience prédisposant à l’émergence d’une synchronisation neuronale. Nous explorons ensuite les processus cérébraux mis en jeu lors de la pratique de la musique au travers d’études réalisées en neurosciences. Par la suite nous présentons plusieurs méthodes permettant de calculer des indices de couplage cérébral sur les données récoltées lors d’expériences en hyperscanning. Nous y décrivons en particulier les méthodes de séparation de source conjointe (jBSS) dont l’avantage est de se rapprocher d’une réalité anatomique et physiologique, ainsi que de prendre en compte l’information inter-sujets lors de l’estimation des sources. Enfin, nous détaillons notre contribution au champ des neurosciences sociales sous la forme d’une expérience longitudinale en hyperscanning-EEG. Elle étudie l’interaction sociale de pianistes à quatre mains lors de l’apprentissage d’un morceau de musique sur une période de deux mois. Nous mettons en évidence qu’il existe une corrélation entre l’augmentation de la performance musicale au cours du temps, la synchronisation cérébrale et la qualité de la relation entre les musiciens. / The aim of our research is to understand the neural bases of social interaction in a musical performance context with tools from neuroscience (electroencephalography: EEG) and signal processing. This manuscript first presents a state of the art of recent studies in the field of hyperscanning. We introduce our recommendations on the prerequisites and methodology to design experiments facilitating the emergence of neuronal synchronization. We then explore the cerebral processes involved in the practice of music through studies in neuroscience of music. Subsequently we present several methods to calculate brain coupling on data collected during experiments in hyperscanning. We describe in particular the methods of joint blind source separation (jBSS) whose advantages are to approach anatomical and physiological reality, as well as taking into account inter-subject information when estimating sources. Finally, we detail our contribution to the field of social neuroscience with a longitudinal experience in hyperscanning-EEG. We studied social interaction from musicians playing four hands piano over a two-month period. We highlight a correlation between increased musical performance over time, cerebral synchronization and quality of the relationship between the pianists.
|
100 |
Séparation de Sources Dans des Mélanges non-Lineaires / Blind Source Separation in Nonlinear MixturesEhsandoust, Bahram 30 April 2018 (has links)
La séparation aveugle de sources aveugle (BSS) est une technique d’estimation des différents signaux observés au travers de leurs mélanges à l’aide de plusieurs capteurs, lorsque le mélange et les signaux sont inconnus. Bien qu’il ait été démontré mathématiquement que pour des mélanges linéaires, sous des conditions faibles, des sources mutuellement indépendantes peuvent être estimées, il n’existe dans de résultats théoriques généraux dans le cas de mélanges non-linéaires. La littérature sur ce sujet est limitée à des résultats concernant des mélanges non linéaires spécifiques.Dans la présente étude, le problème est abordé en utilisant une nouvelle approche utilisant l’information temporelle des signaux. L’idée originale conduisant à ce résultat, est d’étudier le problème de mélanges linéaires, mais variant dans le temps, déduit du problème non linéaire initial par dérivation. Il est démontré que les contre-exemples déjà présentés, démontrant l’inefficacité de l’analyse par composants indépendants (ACI) pour les mélanges non-linéaires, perdent leur validité, considérant l’indépendance au sens des processus stochastiques, au lieu de l’indépendance au sens des variables aléatoires. Sur la base de cette approche, de bons résultats théoriques et des développements algorithmiques sont fournis. Bien que ces réalisations ne soient pas considérées comme une preuve mathématique de la séparabilité des mélanges non-linéaires, il est démontré que, compte tenu de quelques hypothèses satisfaites dans la plupart des applications pratiques, elles sont séparables.De plus, les BSS non-linéaires pour deux ensembles utiles de signaux sources sont également traités, lorsque les sources sont (1) spatialement parcimonieuses, ou (2) des processus Gaussiens. Des méthodes BSS particulières sont proposées pour ces deux cas, dont chacun a été largement étudié dans la littérature qui correspond à des propriétés réalistes pour de nombreuses applications pratiques.Dans le cas de processus Gaussiens, il est démontré que toutes les applications non-linéaires ne peuvent pas préserver la gaussianité de l’entrée, cependant, si on restreint l’étude aux fonctions polynomiales, la seule fonction préservant le caractère gaussiens des processus (signaux) est la fonction linéaire. Cette idée est utilisée pour proposer un algorithme de linéarisation qui, en cascade par une méthode BSS linéaire classique, sépare les mélanges polynomiaux de processus Gaussiens.En ce qui concerne les sources parcimonieuses, on montre qu’elles constituent des variétés distinctes dans l’espaces des observations et peuvent être séparées une fois que les variétés sont apprises. À cette fin, plusieurs problèmes d’apprentissage multiple ont été généralement étudiés, dont les résultats ne se limitent pas au cadre proposé du SRS et peuvent être utilisés dans d’autres domaines nécessitant un problème similaire. / Blind Source Separation (BSS) is a technique for estimating individual source components from their mixtures at multiple sensors, where the mixing model is unknown. Although it has been mathematically shown that for linear mixtures, under mild conditions, mutually independent sources can be reconstructed up to accepted ambiguities, there is not such theoretical basis for general nonlinear models. This is why there are relatively few results in the literature in this regard in the recent decades, which are focused on specific structured nonlinearities.In the present study, the problem is tackled using a novel approach utilizing temporal information of the signals. The original idea followed in this purpose is to study a linear time-varying source separation problem deduced from the initial nonlinear problem by derivations. It is shown that already-proposed counter-examples showing inefficiency of Independent Component Analysis (ICA) for nonlinear mixtures, loose their validity, considering independence in the sense of stochastic processes instead of simple random variables. Based on this approach, both nice theoretical results and algorithmic developments are provided. Even though these achievements are not claimed to be a mathematical proof for the separability of nonlinear mixtures, it is shown that given a few assumptions, which are satisfied in most practical applications, they are separable.Moreover, nonlinear BSS for two useful sets of source signals is also addressed: (1) spatially sparse sources and (2) Gaussian processes. Distinct BSS methods are proposed for these two cases, each of which has been widely studied in the literature and has been shown to be quite beneficial in modeling many practical applications.Concerning Gaussian processes, it is demonstrated that not all nonlinear mappings can preserve Gaussianity of the input. For example being restricted to polynomial functions, the only Gaussianity-preserving function is linear. This idea is utilized for proposing a linearizing algorithm which, cascaded by a conventional linear BSS method, separates polynomial mixturesof Gaussian processes.Concerning spatially sparse sources, it is shown that spatially sparsesources make manifolds in the observations space, and can be separated once the manifolds are clustered and learned. For this purpose, multiple manifold learning problem has been generally studied, whose results are not limited to the proposed BSS framework and can be employed in other topics requiring a similar issue.
|
Page generated in 0.1484 seconds