1 |
Méthode géométrique de séparation de sources non-négatives : applications à l'imagerie dynamique TEP et à la spectrométrie de masse / Geometrical method for non-negative source separation : Application to dynamic PET imaging and mass spectrometryOuedraogo, Wendyam 28 November 2012 (has links)
Cette thèse traite du problème de séparation aveugle de sources non-négatives (c'est à dire des grandeurs positives ou nulles). La situation de séparation de mélanges linéaires instantanés de sources non-négatives se rencontre dans de nombreux problèmes de traitement de signal et d'images, comme la décomposition de signaux mesurés par un spectromètre (spectres de masse, spectres Raman, spectres infrarouges), la décomposition d'images (médicales, multi-spectrale ou hyperspectrales) ou encore l'estimation de l'activité d'un radionucléide. Dans ces problèmes, les grandeurs sont intrinsèquement non-négatives et cette propriété doit être préservée lors de leur estimation, car c'est elle qui donne un sens physique aux composantes estimées. La plupart des méthodes existantes de séparation de sources non-négatives requièrent de ``fortes" hypothèses sur les sources (comme l'indépendance mutuelle, la dominance locale ou encore l'additivité totale des sources), qui ne sont pas toujours vérifiées en pratique. Dans ce travail, nous proposons une nouvelle méthode de séparation de sources non-négatives fondée sur la répartition géométrique du nuage des observations. Les coefficients de mélange et les sources sont estimées en cherchant le cône simplicial d'ouverture minimale contenant le nuage des observations. Cette méthode ne nécessite pas l'indépendance mutuelle des sources, ni même leur décorrélation; elle ne requiert pas non plus la dominance locale des sources, ni leur additivité totale. Une seule condition est nécessaire et suffisante: l'orthant positif doit être l'unique cône simplicial d'ouverture minimale contenant le nuage de points des signaux sources. L'algorithme proposé est évalué avec succès dans deux situations de séparation de sources non-négatives de nature très différentes. Dans la première situation, nous effectuons la séparation de spectres de masse mesurés à la sortie d'un chromatographe liquide haute précision, afin d'identifier et quantifier les différents métabolites (petites molécules) présents dans l'urine d'un rat traité au phénobarbital. Dans la deuxième situation, nous estimons les différents compartiments pharmacocinétiques du radio-traceur FluoroDeoxyGlucose marqué au fluor 18 ([18F]-FDG) dans le cerveau d'un patient humain, à partir d'une série d'images 3D TEP de cet organe. Parmi ces pharmacocinétiques, la fonction d'entrée artérielle présente un grand intérêt pour l'évaluation de l'efficacité d'un traitement anti-cancéreux en oncologie. / This thesis addresses the problem of non-negative blind source separation (i.e. positive or zero quantities). The situation of linear instantaneous mixtures of non-negative sources occurs in many problems of signal and image processing, such as decompositions of signals measured by a spectrometer (mass spectra, Raman spectra, infrared spectra), decomposition of images (medical, multi-spectral and hyperspectral) or estimating of the activity of a radionuclide. In these problems, the sources are inherently non-negative and this property should be preserved during their estimation, in order to get physical meaning components. Most of existing non-negative blind source separation methods require ``strong" assumptions on sources (such as mutual independence, local dominance or total additivity), which are not always satisfied in practice. In this work, we propose a new geometrical method for separating non-negative sources. The mixing matrix and the sources are estimated by finding the minimum aperture simplicial cone containing the scatter plot of mixed data. The proposed method does not require the mutual independence of the sources, neither their decorrelation, nor their local dominance, or their total additivity. One condition is necessary and sufficient: the positive orthant must be the unique minimum aperture simplicial cone cone containing the scatter plot of the sources. The proposed algorithm is successfully evaluated in two different problems of non-negative sources separation. In the first situation, we perform the separation of mass spectra measured at the output of a liquid chromatograph to identify and quantify the different metabolites (small molecules) present in the urine of rats treated with phenobarbital . In the second situation, we estimate the different pharmacokinetics compartments of the radiotracer [18F]-FDG in human brain, from a set of 3D PET images of this organ, without blood sampling. Among these pharmacokinetics, arterial input function is of great interest to evaluate the effectiveness of anti-cancer treatment in oncology.
|
2 |
Slowness learningSprekeler, Henning 18 February 2009 (has links)
In dieser Doktorarbeit wird Langsamkeit als unüberwachtes Lernprinzip in sensorischen Systemen untersucht. Dabei wird zwei Aspekten besondere Aufmerksamkeit gewidmet: der mathematischen Analyse von Slow Feature Analysis - einer Implementierung des Langsamkeitsprinzips - und der Frage, wie das Langsamkeitsprinzip biologisch umgesetzt werden kann. Im ersten Teil wird zunächst eine mathematische Theorie für Slow Feature Analysis entwickelt, die zeigt, dass die optimalen Funktionen für Slow Feature Analysis die Lösungen einer partiellen Differentialgleichung sind. Die Theorie erlaubt, das Verhalten komplizierter Anwendungen analytisch vorherzusagen und intuitiv zu verstehen. Als konkrete Anwendungen wird das Erlernen von Orts- und Kopfrichtungszellen, sowie von komplexen Zellen im primären visuellen Kortex vorgestellt. Im Rahmen einer technischen Anwendung werden die theoretischen Ergebnisse verwendet, um einen neuen Algorithmus für nichtlineare blinde Quellentrennung zu entwickeln und zu testen. Als Abschluss des ersten Teils wird die Beziehung zwischen dem Langsamkeitsprinzip und dem Lernprinzip der verhersagenden Kodierung mit Hilfe eines informationstheoretischen Ansatzes untersucht. Der zweite Teil der Arbeit befasst sich mit der Frage der biologischen Implementierung des Langsamkeitsprinzips. Dazu wird zunächst gezeigt, dass Spikezeit-abhängige Plastizität unter bestimmten Bedingungen als Implementierung des Langsamkeitsprinzips verstanden werden kann. Abschließend wird gezeigt, dass sich die Lerndynamik sowohl von gradientenbasiertem Langsamkeitslernen als auch von Spikezeit-abhängiger Plastizität mathematisch durch Reaktions-Diffusions-Gleichungen beschreiben lässt. / In this thesis, we investigate slowness as an unsupervised learning principle of sensory processing. Two aspects are given particular emphasis: (a) the mathematical analysis of Slow Feature Analysis (SFA) as one particular implementation of slowness learning and (b) the question, how slowness learning can be implemented in a biologically plausible fashion. In the first part of the thesis, we develop a mathematical framework for SFA and show that the optimal functions for SFA are the solutions of a partial differential eigenvalue problem. The theory allows (a) to make analytical predictions for the behavior of complicated applications and (b) an intuitive understanding of how the statistics of the input data are reflected in the optimal functions of SFA. The theory is applied to the learning of place and head-direction representations and to the learning of complex cell receptive fields as found in primary visual cortex. As a technical application, we use the theoretical results to develop and test a new algorithm for nonlinear blind source separation. The first part of the thesis is concluded by an information-theoretic analysis of the relation between slowness learning and predictive coding. In the second part of the thesis, we study the question, how slowness learning could be implemented in a biologically plausible manner. To this end, we first show that spike timing-dependent plasticity can under certain conditions be interpreted as an implementation of slowness learning. Finally, we show that both gradient-based slowness learning and spike timing-dependent plasticity lead to receptive field dynamics that can be described in terms of reaction-diffusion equations.
|
Page generated in 0.1326 seconds