• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recherches de WIMPs de basse masse et d'axions avec l'expérience EDELWEISS / Low mass WIMP and axion searches with the EDELWEISS experiement

Main de Boissière, Thibault 03 July 2015 (has links)
En dépit des récents succès de la cosmologie observationnelle, la majeure partie de l'univers demeure méconnue: la matière usuelle, dite baryonique, ne représente que 5% du contenu total de l'univers. Dans le modèle cosmologique standard, deux autres composantes complètent notre description: l'énergie noire et la matière noire (respectivement 70% et 25% du contenu total). Dans cette thèse, nous nous intéressons à la matière noire, une nouvelle forme de matière qui doit être non-relativiste, non-baryonique et neutre de charge. Nous avons étudié deux candidats : les WIMPs et les axions. Toutes nos analyses ont été menées au sein de la collaboration EDELWEISS, qui opère des détecteurs sensibles à un éventuel signal de WIMP ou d'axion. Les axions ont d'abord été introduits pour résoudre le problème de la symétrie CP en chromodynamique quantique. Ils peuvent être produits dans le soleil par des processus divers et, dans certains modèles, peuvent contribuer à la densité de matière noire. Nous avons utilisé les données d'EDELWEISS pour la recherche d'axions suivant quatre modes de production-détection distincts. Ces mécanismes font intervenir le couplage des axions aux nucléons, aux photons et aux électrons. Nous n'avons observé aucun excès de signal par rapport au bruit de fond. Ces constatations nous ont permis d'obtenir des contraintes fortes sur la valeur de chaque couplage d'axion et d'exclure plusieurs ordres de grandeur de la masse de l'axion dans le cadre de modèles spécifiques de QCD. Les WIMPs font partie des candidats à la matière noire les plus étudiés. Ce sont des particules interagissant faiblement avec une masse pouvant aller du GeV au TeV. Des modèles théoriques et des résultats expérimentaux récents semblent converger vers des masses faibles (de l'ordre de quelques GeV). à la lumière de ces développements, nous avons donc choisi de privilégier l'étude des WIMPs de basse masse (de 3 à 25 GeV). Nous avons mis en place une analyse multivariée particulièrement adaptée à la recherche de WIMPs de basse masse. Cette analyse a été optimisée sur une fraction de 35 kg.jour du jeu de données EDELWEISS complet. Nous n'avons pas observé d'excès de signal par rapport au bruit de fond attendu. Par conséquent, nous avons calculé une limite supérieure sur la section efficace WIMP-nucléon spin-indépendante de 1.48 × 10⁻⁶ pb à 10 GeV. / In spite of the recent successes of observational cosmology, most of the universe remains poorly known. Known particles (which we call baryons) only make up 5% of the total content of the universe. The standard cosmological model contains two other components: Dark Energy and Dark Matter (respectively 70% and 25% of the total content). Dark Matter, which is generally believed to be a non-relativistic, charge neutral and non-baryonic new form of matter, is the central focus of this work. We studied two likely candidates, namely WIMPs and axions. Our analyses were carried out within the EDELWEISS collaboration which operates detectors sensitive to both WIMP and axion signals. Axions were first introduced to solve the strong CP problem. They can be produced in the Sun through a variety of processes and in some models, they may also contribute to the Dark Matter density. In this work, we used EDELWEISS data to search for axions through four distinct production-detection mechanisms. These mechanisms involve the coupling of axions to nucleons, photons and electrons. No excess over background was found. These null observations allowed us to set stringent constraints on the axion couplings and exclude several orders of magnitude of the axion mass within specific QCD axion models. On the other hand, WIMPs are the canonical dark matter candidate whose mass lies in the GeV-TeV range. With the motivation of recent theoretical developments and possible signal hints, we focused our effort on so-called low mass WIMPs (3 to 25 GeV). This thesis describes a new multivariate analysis specifically designed for this mass range, which we tuned using an unblinded fraction of the data set (35 kg.d) from a single EDELWEISS detector. No significant signal over background excess was found and we set an upper limit on the spin-independent WIMP-nucleon cross section of 1.48 × 10⁻⁶ pb at 10 GeV.
2

Caractérisation et étalonnage de la caméra de l'expérience ballon PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium) / Caracterization and calibration of the camera of the PILOT balloon born experiment (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium)

Buttice, Vincent 30 September 2013 (has links)
PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium) est une expérience embarquée en ballon stratosphérique destinée à la mesure de l'émission polarisée de notre galaxie dans le submillimétrique. La charge pointée de PILOT est composée d'un télescope au foyer duquel est placée une caméra embarquant 2048 bolomètres, refroidis à 300 mK, mesurant dans deux bandes spectrales (240 µm et 550 µm) et deux polarisations. La détection de la polarisation est réalisée à l'aide d'un polariseur placé à 45° dans le faisceau, le décomposant en deux composantes polarisées orthogonales chacune détectée par un bloc détecteur, et d'une lame demi-onde rotative. L'Institut d'Astrophysique Spatiale (Orsay, France) est responsable de la réalisation, de l'intégration, des tests et de l'étalonnage spectral de la caméra. Pour cela deux bancs de mesures sont développés, un pour les essais d'imagerie et de polarisation, et un pour l'étalonnage spectral. L'expérimentation permet de valider l'alignement des optiques froides, de caractériser la qualité optique des images, de caractériser les réponses temporelles et en intensité des détecteurs, et de mesurer la réponse spectrale de la caméra. Un modèle photométrique de l'instrument est développé simulant les différentes configurations pour les essais d'étalonnage spectral, d'imagerie en laboratoire, et en vol, ceci afin d'estimer la puissance totale reçue par chaque pixel du détecteur de chaque configuration. Cette puissance totale est issue de l'émission thermique de l'instrument, de l'atmosphère et des sources observées en vol ou de l'environnement du laboratoire. Une campagne de tests a permis de caractériser et d'étalonner la caméra de l'expérience PILOT. Les premières images dans le domaine du submillimétrique ont été révélées, et les premières réponses spectrales mesurées. Suite à la caractérisation et l'étalonnage spectral, la caméra est alignée avec le miroir primaire sur la nacelle CNES pour des caractérisations et des étalonnages en polarisation de l'instrument complet. Le premier vol est prévu pour le milieu de l'année 2014. / The Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon borne experiment designed to measure the polarized emission from dust grains in the galaxy in the submillimeter range. The payload is composed of a telescope at the optical focus of which is placed a camera using 2048 bolometers cooled to 300 mK. The camera performs polarized optical measurements in two spectral bands (240 µm and 550 µm). The polarization measurement is based on a cryogenic rotating half-wave plate and a fixed mesh grid polarizer placed at 45° separating the beam into two orthogonal polarized components each detected by a detector array. The Institut d'Astrophysique Spatiale (Orsay, France) is responsible for the design, integration, tests and spectral calibration of the camera. Two optical benches have been designed for its imaging and polarization characterization and spectral calibration. Theses setups allow to validate the alignment of the camera cryogenic optics, to check the optical quality of the images, to characterize the time and intensity response of the detectors, and to measure the overall spectral response. A numerical photometric model of the instrument was developed for the optical configuration during calibration tests (spectral), functional tests (imager) on the ground, and flight configuration at the telescope focus, giving an estimate of the optical power received by the detectors for each configuration. The tests campaign validates the PILOT camera characterization and calibration. It delivered the first submillimeter images and the first spectral responses. Next, the camera will be aligned and integrated with the primary mirror of the telescope on the CNES gondola, for characterization and optical polarization calibration of the complete instrument. The first flight is now planned for mid 2014.
3

Caractérisation et étalonnage de la caméra de l'expérience ballon PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium)

Buttice, Vincent 30 September 2013 (has links) (PDF)
PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium) est une expérience embarquée en ballon stratosphérique destinée à la mesure de l'émission polarisée de notre galaxie dans le submillimétrique. La charge pointée de PILOT est composée d'un télescope au foyer duquel est placée une caméra embarquant 2048 bolomètres, refroidis à 300 mK, mesurant dans deux bandes spectrales (240 µm et 550 µm) et deux polarisations. La détection de la polarisation est réalisée à l'aide d'un polariseur placé à 45° dans le faisceau, le décomposant en deux composantes polarisées orthogonales chacune détectée par un bloc détecteur, et d'une lame demi-onde rotative. L'Institut d'Astrophysique Spatiale (Orsay, France) est responsable de la réalisation, de l'intégration, des tests et de l'étalonnage spectral de la caméra. Pour cela deux bancs de mesures sont développés, un pour les essais d'imagerie et de polarisation, et un pour l'étalonnage spectral. L'expérimentation permet de valider l'alignement des optiques froides, de caractériser la qualité optique des images, de caractériser les réponses temporelles et en intensité des détecteurs, et de mesurer la réponse spectrale de la caméra. Un modèle photométrique de l'instrument est développé simulant les différentes configurations pour les essais d'étalonnage spectral, d'imagerie en laboratoire, et en vol, ceci afin d'estimer la puissance totale reçue par chaque pixel du détecteur de chaque configuration. Cette puissance totale est issue de l'émission thermique de l'instrument, de l'atmosphère et des sources observées en vol ou de l'environnement du laboratoire. Une campagne de tests a permis de caractériser et d'étalonner la caméra de l'expérience PILOT. Les premières images dans le domaine du submillimétrique ont été révélées, et les premières réponses spectrales mesurées. Suite à la caractérisation et l'étalonnage spectral, la caméra est alignée avec le miroir primaire sur la nacelle CNES pour des caractérisations et des étalonnages en polarisation de l'instrument complet. Le premier vol est prévu pour le milieu de l'année 2014.
4

Caractérisation et étalonnage de la caméra de l'expérience ballon PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium)

Buttice, Vincent 30 September 2013 (has links) (PDF)
PILOT (Polarized Instrument for Long wavelength Observation of the Tenuous interstellar medium) est une expérience embarquée en ballon stratosphérique destinée à la mesure de l'émission polarisée de notre galaxie dans le submillimétrique. La charge pointée de PILOT est composée d'un télescope au foyer duquel est placée une caméra embarquant 2048 bolomètres, refroidis à 300 mK, mesurant dans deux bandes spectrales (240 µm et 550 µm) et deux polarisations. La détection de la polarisation est réalisée à l'aide d'un polariseur placé à 45° dans le faisceau, le décomposant en deux composantes polarisées orthogonales chacune détectée par un bloc détecteur, et d'une lame demi-onde rotative. L'Institut d'Astrophysique Spatiale (Orsay, France) est responsable de la réalisation, de l'intégration, des tests et de l'étalonnage spectral de la caméra. Pour cela deux bancs de mesures sont développés, un pour les essais d'imagerie et de polarisation, et un pour l'étalonnage spectral. L'expérimentation permet de valider l'alignement des optiques froides, de caractériser la qualité optique des images, de caractériser les réponses temporelles et en intensité des détecteurs, et de mesurer la réponse spectrale de la caméra. Un modèle photométrique de l'instrument est développé simulant les différentes configurations pour les essais d'étalonnage spectral, d'imagerie en laboratoire, et en vol, ceci afin d'estimer la puissance totale reçue par chaque pixel du détecteur de chaque configuration. Cette puissance totale est issue de l'émission thermique de l'instrument, de l'atmosphère et des sources observées en vol ou de l'environnement du laboratoire. Une campagne de tests a permis de caractériser et d'étalonner la caméra de l'expérience PILOT. Les premières images dans le domaine du submillimétrique ont été révélées, et les premières réponses spectrales mesurées. Suite à la caractérisation et l'étalonnage spectral, la caméra est alignée avec le miroir primaire sur la nacelle CNES pour des caractérisations et des étalonnages en polarisation de l'instrument complet. Le premier vol est prévu pour le milieu de l'année 2014.

Page generated in 0.0586 seconds