1 |
Gisbertus Bonnet bijdrage tot de kennis van de geschiedenis der gereformeerde theologie in de achttiende eeuw /End, Adrianus van den. January 1957 (has links)
Thesis (Th. D.)--Rijksuniversiteit, Utrecht, 1957. / Summary in English. Includes bibliographical references (p. [109]-111) and index.
|
2 |
Gisbertus Bonnet bijdrage tot de kennis van de geschiedenis der gereformeerde theologie in de achttiende eeuw /End, Adrianus van den. January 1957 (has links)
Thesis (Th. D.)--Rijksuniversiteit, Utrecht, 1957. / Summary in English. Includes bibliographical references (p. [109]-111) and index.
|
3 |
Charles Bonnet de Genève philosophe et naturaliste ...Lemoine, Albert. January 1850 (has links)
Thèse présentée à la Faculté de lettres de Paris ...
|
4 |
Charles Bonnet de Genève philosophe et naturaliste ...Lemoine, Albert. January 1850 (has links)
Thèse présentée à la Faculté de lettres de Paris ...
|
5 |
Der Organismusbegriff bei BonnetKrüger, Johannes, January 1929 (has links)
Inaug.-Diss.--Halle. / Cover title. Vita. Bibliography: p. [93]-94.
|
6 |
Georges Bonnet (1889-1973) : les combats d'un pacifiste /Puyaubert, Jacques, January 2007 (has links)
Texte remanié de: Thèse de doctorat--Histoire--Bordeaux 3, 2001. Titre de soutenance : Georges Bonnet (1889-1973), étude biographique. / Bibliogr. p. 341-351. Index.
|
7 |
Die pädagogisch-didaktischen theorien Charles Bonnets ...Fritzsche, Oskar William, January 1905 (has links)
Inaug.-diss.--Leipzig. / Vita. "Literatur": p. [118]-120.
|
8 |
An application for the Gauss-Bonnet theoremGül, Erdal 25 September 2017 (has links)
The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2-sphere, S². We determine an orthonormal basis by applying stereographic projection on S² and we obtain the area of the unit 2 -sphere S² computing connection and curvature matrices.
|
9 |
Gauss-Bonnet formulaBroersma, Heather Ann 01 January 2006 (has links)
From fundamental forms to curvatures and geodesics, differential geometry has many special theorems and applications worth examining. Among these, the Gauss-Bonnet Theorem is one of the well-known theorems in classical differential geometry. It links geometrical and topological properties of a surface. The thesis introduced some basic concepts in differential geometry, explained them with examples, analyzed the Gauss-Bonnet Theorem and presented the proof of the theorem in greater detail. The thesis also considered applications of the Gauss-Bonnet theorem to some special surfaces.
|
10 |
Laplacien discret d'un 2-complexe simplicial / The Laplace operator on 1-forms in the Oriented GraphsChebbi, Yassin 07 April 2018 (has links)
Voir 4ème de couverture / Voir 4ème de couverture
|
Page generated in 0.0276 seconds