Spelling suggestions: "subject:"bridgman"" "subject:"bridgeman""
1 |
Modélisation à l’échelle atomique du rôle des dislocations dans la déformation de la bridgmanite / The role of dislocations in bridgmanite deformation : an atomic scale studyKraych, Antoine 20 June 2016 (has links)
La déformation des roches du manteau terrestre contrôle les mécanismes de convection du manteau, qui se manifestent à notre échelle par les séismes, les volcans ou encore la tectonique des plaques. Cette étude propose une détermination de la mobilité des dislocations, et de leur rôle dans la déformation plastique de la bridgmanite, principal constituant du manteau terrestre. La structure des dislocations à l’échelle atomique détermine leur capacité à se déplacer dans un cristal, et donc à déformer le matériau. Nous accédons à la structure de ces défauts aux pressions du manteau, en les modélisant à l’échelle atomique dans des calculs de statique moléculaire. Le mécanisme de glissement thermiquement activé des dislocations dans la bridgmanite, par nucléation de doubles décrochements, est évalué en couplant un modèle continu aux propriétés fondamentales des dislocations déterminées numériquement. Ces résultats permettent d’accéder à la vitesse de glissement des dislocations aux pressions et températures du manteau terrestre. Le modèle est capable de reproduire les niveaux de contraintes soutenus par la bridgmanite lors d’expériences de déformation en laboratoire. Le modèle est également capable d’estimer l’efficacité du glissement des dislocations aux conditions du manteau, et nous permet de discuter de sa pertinence dans le cadre de la déformation du manteau terrestre. / Heat transfer through the mantle is carried by convection, which involves plastic flow of the mantle constituents. In this study, we model the mobility of dislocations, and their role in the plastic deformation of bridgmanite, the most abundant constituent of the lower mantle. The dislocation structures at the atomic scale control their mobility, and hence their influence on the material’s deformation. We determine the structure of dislocations at pressure relevant for the lower mantle, by modeling these defects at the atomic scale with molecular static calculations. The thermally-activated mechanism of dislocation glide in bridgmanite, the kink-pair nucleation, is assessed by coupling a continuous model to the fundamental properties of dislocations. These results allow to estimate the glide velocity of dislocations, as a function of pressure and temperature. The model is able to reproduce the yield stress measured in laboratory deformation experiments. The model is also able to estimate the stress level needed to deform bridgmanite by dislocation glide at mantle conditions, and allows us to discuss their role in the deformation of the Earth’s lower mantle.
|
2 |
Modeling creep of lower mantle minerals : bridgmanite and (Mg,Fe)O / Modélisation du fluage de minéraux du manteau inférieur : bridgmanite et (Mg,Fe)OReali, Riccardo 11 September 2018 (has links)
Cette thèse porte sur la déformation de deux phases minérales majeures du manteau inférieur de la Terre : la bridgmanite et (Mg,Fe)O. Ils représentent près de 95% du manteau inférieur, et leur rhéologie est de première importance en vue de mieux comprendre la convection mantellique. La rhéologie de ces phases a été modélisée grâce à l’utilisation de techniques de calcul numériques et analytiques afin de déterminer leur réponse en fluage (c’est-à-dire l’écoulement stationnaire sous une charge constante).Les agents pertinents de la déformation en fluage sont identifiés et leur comportement est modélisé à l’échelle du cristal. Les dislocations étant les porteurs principaux de la déformation plastique, le fluage a donc été modélisé comme résultant du glissement et/ou de la montée (contrôlée par la diffusion) des dislocations. Le fluage de (Mg,Fe)O résulte d’une combinaison de glissement et de montée des dislocations. Afin de modéliser ce comportement à l’échelle mésoscopique, une technique de dynamique des dislocations 2,5D a été employée. Dans (Mg,Fe)O, le glissement des dislocations est responsable de la déformation plastique, mais la vitesse de fluage est contrôlée par la montée. Nos calculs de vitesses de fluage permettent d’estimer la viscosité de (Mg,Fe)O dans les conditions des couches profondes du manteau inférieur. Pour la bridgmanite, nous proposons un fluage impliquant la montée pure des dislocations dont la vitesse de fluage est calculée sur la base d’un modèle analytique de la littérature. Nous en déduisons la vitesse de fluage de la bridgmanite le long d’un géotherme, valeurs que l’on peut comparer aux observables disponibles actuellement. / This thesis work addresses the deformation behavior of two major mineral phases of the Earth’s lower mantle: bridgmanite and (Mg, Fe)O. They constitute ~90-95% of the lower mantle and their rheology is of primary importance for a better understanding of mantle convection. The rheological properties of these phases were modeled through the implementation of numerical and analytical techniques, in order to assess their creep behavior (i.e. steady-state deformation under a constant applied stress).The relevant deformation agents driving creep are identified and then modeled at the single crystal scale. In this framework, dislocations are amongst the main carriers of crystal plasticity and the creep behavior of the considered minerals can therefore be assessed by considering dislocation glide and diffusion-driven dislocation climb. (Mg,Fe)O creep is driven by the interplay between glide and climb and in order to model it, a 2.5-dimensional (2.5D) dislocation dynamics (DD) approach has been deployed. 2.5D-DD is a numerical technique which addresses the collective behavior of dislocations at the mesoscale. It is demonstrated that dislocation glide is responsible for the plastic deformation and climb is the rate-limiting mechanism. From the modeled creep strain rates it was possible to estimate viscosity of (Mg,Fe)O at lowermost mantle conditions. As for bridgmanite a pure climb mechanism is proposed, and the creep strain rates were evaluated according to a physics-based analytical creep model. The viscosity of bridgmanite along a geotherm is retrieved and compared with the available observables.
|
Page generated in 0.0506 seconds