• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 15
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Recherche et caractérisation de systèmes binaires dont l'une des composantes est de faible masse

Baron, Frédérique 04 1900 (has links)
Nous présentons la découverte de quatorze nouveaux systèmes binaires ayant une séparation supérieure à 250 UA et dont au moins l'une des composantes est une naine M ou une naine L. Ces systèmes ont d'abord été identifiés en cherchant des objets ayant un mouvement propre commun autour d'étoiles connues possédant un mouvement propre élevé, grâce à une corrélation croisée de grands relevés du ciel dans l'infrarouge proche (2MASS, SDSS et SIMP). Un suivi astrométrique, afin de confirmer le mouvement propre commun, a été réalisé sur toutes les cibles avec la caméra SIMON et/ou la caméra CPAPIR à l'Observatoire du Mont-Mégatic (OMM) ou à l'Observatoire interaméricain du Cerro Tololo (CTIO). Un suivi spectroscopique a aussi été effectué sur la plupart des compagnons avec GMOS ou GNIRS à Gemini afin de déterminer leurs types spectraux. La probabilité que deux objets forment un système binaire par hasard a été évaluée afin de s'assurer que les couples candidats que nous présentons soient réellement liés.Un de nos nouveaux systèmes a un compagnon de masse sous-stellaire : 2M1259+1001 (L4.5). L'étude des systèmes que nous avons découverts pourra, entre autre, nous aider à mieux comprendre les mécanismes de formation des étoiles de très faible masse et des naines brunes. / We report the discovery of 14 new low-mass binary systems containing mid-M to mid-L dwarf companions with a separation larger than 250 AU. These systems were first identified by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont-Mégantic (OMM) and Cerro Tololo Inter-American Observatory (CTIO) telescopes for most of the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine their spectral types. Statistical arguments are provided to show that all of the systems we report here are very likely to be truly bound. One of the new systems we discovered has a brown dwarf companion: 2M1259+1001 (L4.5). The study of the new systems we have discovered will be useful to help us better understand how very low mass stars and brown dwarfs form.
22

TOYS : time-domain observations of young stars

Bozhinova, Inna January 2017 (has links)
Stars form inside clouds of molecular gas and dust. In the early stages of stellar evolution the remainders of the initial cloud form a circumstellar disk. For the next few million years the disk will slowly dissipate via accretion, outflows, photoevaporation and planet growth while the star makes its way onto the Main Sequence. This stage of a star's life is referred to as the T Tauri phase and is characterised by high-level spectrophotometric variability. This thesis aims to study and map out the environments of T Tauri stars down to the very low mass regime by the means of time-domain monitoring. Different physical processes in the system manifest themselves as variability on different time- scales as well as produce characteristic spectroscopic and photometric features at various wave- lengths. In order to study young stellar objects in depth, the observing campaigns presented in this work were designed to cover a large range of time-scales - minutes, hours, days and months. Combining all the data, this thesis establishes a baseline of over a decade for some objects. The observations also cover a wide range of wavelengths from the optical to the mid-infrared part of the spectrum. The star RW Aur experienced two long-lasting dimming events in 2010 and 2014. This thesis presents a large collection of spectral and photometric measurements carried out just before and during the 2014 event. Spectral accretion signatures indicate no change in the accretion activity of the system. Photometry indicates that parallel to the dimming in the optical the star becomes brighter in the mid-infrared. The observations in this work combined with literature data suggest that the origin of the 2014 event is most likely obscuration of the star by hot dust from the disk being lifted into the disk wind. Very low mass stars (< 0.4 M⊙) are the most common type of star in the Galaxy. In order to understand the early stages of stellar evolution we must study young very low mass stars. This work investigates the photometric and spectroscopic variability of seven brown dwarfs in star forming regions near σ Ori and ε Ori. All targets exhibit optical photometric variability between from 0.1 to over 1.0 magnitude that persists on a time-scale of at least one decade. Despite the photometric variability no change in the spectral type is measured. In the cases where the stars are accreting, modelling of the spectral changes suggest the accretion flow is more homogeneous and less funnelled compared to Sun-like T Tauri stars. The non-accreting variables are more plausibly explained by obscuration by circumstellar material, possibly a ring made out of multiple clouds of dust grains and pebbles with varying optical depths. The star-disk systems studied in this thesis have some broader implications for star and planet formation theory. The case-study of RW Aur has unambiguously demonstrated that the planet- forming environment is very dynamic and can change dramatically on short time-scales, which in turn would have implications for the diversity of planetary systems found in the Galaxy. The Orion stars have shown that the current theory for the T Tauri stage of stellar evolution is valid down to the very low mass regime. The seven dwarfs are a good example for the evolutionary path of circumstellar disks, showing the transition from gas-high, flared accretion disks (σ Ori) to dust-dominated, depleted, structured debris disks (ε Ori).

Page generated in 0.0501 seconds