Spelling suggestions: "subject:"brownian"" "subject:"browning""
21 |
Modélisation et simulation de l'agglomération des colloïdes dans un écoulement turbulent / Modeling and simulation of the agglomeration of colloidal particles in a turbulent flowMohaupt, Mikaël 31 October 2011 (has links)
Ce travail de thèse porte sur la modélisation et la simulation numérique de la collision et l'agglomération de particules colloïdales dans un écoulement fluide turbulent par une nouvelle méthode. Ces particules sont sensibles dans une même mesure aux effets brownien et turbulent. La première partie du travail concerne la modélisation du phénomène physique,allant du transport des particules jusqu'à la modélisation des forces d'adhésion physico-chimiques en passant par l'étape cruciale qui est la détection des interactions entre les particules (collisions). Cette détection des collisions est dans un premier temps étudiée par rapport aux algorithmes classiques existants dans la littérature. Bien que très efficaces dans le cadre de particules soumises à l'agitation turbulente, les conclusions de cette partie exposent les limites des méthodes existantes en termes de coûts numériques, pour le traitement d'un ensemble de colloïdes soumis au mouvement brownien. La seconde partie du travail oriente alors les travaux vers une vision novatrice du phénomène physique considéré. Le caractère diffusif aléatoire est alors considéré d'un point de vu stochastique, comme un processus conditionné dans l'espace et dans le temps. Ainsi, une nouvelle méthode de détection et de traitement des collisions de particules soumises exclusivement à un mouvement diffusif est présentée et validée, exposant un gain considérable en termes de coûts numériques. Le potentiel de cette nouvelle approche est validé et ouvre de nombreuses pistes de réflexion dans l'utilisation des méthodes stochastiques appliqués à la représentation de la physique / Ph.D thesis focuses on modeling and numerical simulation of collision and agglomeration of colloidal particles in a turbulent flow by using a new method. These particles are affected by both Brownian and turbulent effects. The first part of the work deals with current models of the physical phenomenon, from the transport of single particles to a model for physico-chemical adhesive forces, and points out the critical step which is the detection of interactions between particles (collisions). This detection is initially studied by applying classical algorithms existing in the literature. Although they are very efficient in the context of particles subject to turbulent agitation, first conclusions show the limitations of these existing methods in terms of numerical costs, considering the treatment of colloids subject to the Brownian motion. The second part of this work proposes a new vision of the physical phenomenon focusing on the random diffusive behaviour. This issue is adressed from a stochastic point of view as a process conditionned in space and time. Thus, a new method for the detection and treatment of collisions is presented and validated, which represents considerable gain in terms of numerical cost. The potential of this new approach is validated and opens new opportunities for the use of stochastic methods applied to the representation of physics
|
22 |
Sur certains processus aléatoires en milieu aléatoireFaraud, Gabriel 03 September 2010 (has links) (PDF)
Cette thèse a pour objet l'étude de processus aléatoires en milieu aléatoire. Ce type de processus a été introduit pour la première fois en 1965 par A.A. Chernov, et a depuis fait l'objet de nombreuses recherches. Parallèlement au modèle élémentaire unidimensionnel ́etudié par A.A. Chernov, de nombreuses tentatives ont ́eté faites récemment afin d'appliquer le même type d'approche dans des contextes différents. Nous nous focalisons particulièrement sur deux exemples. Tout d'abord nous étudions le cas de la marche aléatoire en milieu aléatoire sur les arbres, pour laquelle nous étendons un critère de récurrence/transience dû à R. Lyons et R. Pemantle, avant de présenter une étude du comportement asymptotique dans le régime critique. Nous montrons dans un premier cas un théorème central limite, et dans un second nous identifions un équivalent en (logn)^3. Le régime intermédiaire entre ces deux comportements a fait l'objet de travaux plus anciens de Y. Hu et Z. Shi. Dans une autre partie nous étudions un processus aléatoire en milieu aléatoire à temps continu, connu sous le nom de diffusion de Brox. Nous étendons à ce processus des résultats dûs à A. Fribergh, N. Gantert et S. Popov concernant l'accélération et le ralentissement.
|
23 |
Prédiction structurale de biomolécules à l'aide d'une construction d'automates cellulaires simulant la dynamique moléculaireCaron, André January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
24 |
Options exotiques dans les modèles exponentiels de Lévy / Exotic options under exponential Lévy modelDia, El Hadj Aly 01 July 2010 (has links)
La valorisation des options exotiques continues de façon "exacte" est très difficile (voire impossible) dans les modèles exponentiels de Lévy. En fait nous verrons que pour les options lookback et barrière digitale, et sous l'hypothèse que les sauts de l'actif sous-jacent sont tous négatifs, nous avons des formules semi-fermées. En général il faut recourir à des techniques qui permettent d'approcher les prix de ces dérivés, ce qui engendre des erreurs. Nous étudierons le comportement asymptotique de ces erreurs. Dans certains cas ces erreurs peuvent être corrigées de sorte à obtenir une convergence plus rapide vers la valeur "exacte" recherchée. Nous proposons aussi des méthodes permettant d'évaluer les prix des options exotiques par des techniques de Monte-Carlo / The exact valuation of continuous exotic options is very difficult (sometimes impossible) in exponential Lévy models. In fact, for lookback options and digital barrier, and assuming that the jumps of the underlying assets are all negative, we have semi-closed formulas. In general it is necessary to use numerical methods to approach the prices of these derivatives, which causes errors. We study the asymptotic behavior of these errors. In some cases these errors can be corrected so that to obtain a faster convergence to the fair value. We also propose some methods to evaluate the prices of exotic options by Monte Carlo techniques
|
25 |
Brownian motion under external force field and anomalous diffusion / Etude du mouvement brownien sous champ de force externe et diffusion anormalesSentissi, Oussama 07 December 2018 (has links)
Le travail réalisé dans cette thèse porte sur l’étude du mouvement Brownien d’une suspension colloïdale sous champ de force optique faible et l’étude fondamentale des effets convectifs et de diffusion anormale. Nous avons construit un microscope à fond noir afin de suivre les particules et de reconstruire leurs trajectoires avec une résolution spatiale de 20 nm et une résolution temporelle de 8 ms. Ces trajectoires sont analysées statistiquement afin d’en extraire la contribution balistique induite par la force de pression de radiation appliquée par le laser d’illumination. En plus de l’effet mécanique du laser sur les particules, le fluide absorbe les radiations ce qui le chauffe et crée ainsi une différence de température entre la partie illuminée et la partie non illuminée de l’échantillon.Nous validons aussi les hypothèses de stationnarité et d’érgodicité qui sont fondamentales pour notre stratégie de mesure de force faible. L’analyse statistique fine de notre système nous permet de mettre en évidence et de caractériser des effets de diffusion anormale brownienne. Nos expériences révèlent en effet la présence de trajectoires anormales dont l’origine se comprend comme un effet d’interaction entre la particule suivie et le reste de l’ensemble colloïdal. / The work presented in this thesis deals with the study of the Brownian motion of a colloidal suspension under an external weak optical force, the study of convective effects and anomalous diffusion. We have built a dark field microscope in order to track the particles and reconstruct the Brownian trajectories with a spatial resolution of 20 nm and a temporal resolution of 8 ms.Statistical analysis of the trajectories has allowed us to extract the ballistic contribution induced by the radiation pressure force exerted by irradiating a laser on the particles. In addition to the mechanical effect of the laser on the particles, the fluid absorbs the radiation. Consequently, the temperature of the fluid rises and results in a thermal difference between the illuminated and the non-illuminated areas of the sample. In order to validate our weak force measurement, we have investigated two fundamental hypotheses in statistical physics: ergodicity and stationary aspect. A closer statistical analysis enables us to demonstrate and characterize the effect of anomalous Brownian diffusion. Our experiments have revealed the existence of anomalous trajectories, which can be understood as an effect of the interactions between the particles.
|
26 |
Etude de systèmes différentiels fractionnaires / On some fractional differential systemsDeya, Aurélien 18 October 2010 (has links)
Ce mémoire de thèse est consacré à l’interprétation et la résolution de différents types de systèmes différentiels, fini ou infini-dimensionnels, dirigés par un processus höldérien. La stratégie mise en œuvre consiste en une adaptation de la théorie des trajectoires rugueuses pour les équations différentielles ordinaires. Sont plus particulièrement considérés le cas de l’équation de Volterra et le cas de l’équation de la chaleur. Le mémoire fait en outre apparaître une réflexion systématique sur les retombées de cette approche en termes d’interprétation de systèmes stochastiques, avec une attention particulière portée au cas du mouvement Brownien fractionnaire. Il propose enfin une analyse détaillée de plusieurs schémas d’approximation numérique des solutions. / This PhD thesis work is devoted to the study of some finite and infinite-dimensional differential systems driven by Hölder processes. The general strategy consists in adapting the rough paths methods, originally designed to handle standard systems only. More specifically, we consider the case of the Volterra systems, as well as the case of heat equations. This work also focuses on the spin-offs of the rough paths approach as far as stochastic systems are concerned, with a special attention to the fractional Brownian motion. Finally, a detailed analysis of several approximation schemes for the solutions is provided
|
27 |
Sur différents problèmes de convergence en loi dans l'espace de Wiener / On different problems of convergence in law in the Wiener spaceZintout, Rola 24 September 2015 (has links)
La thèse porte sur l'approximation probabiliste dans un contexte fractionnaire, c'est-a-dire dans des modèles reliés d'une manière ou d'une autre au mouvement brownien fractionnaire. Le dénominateur commun de nos résultats est qu'ils proposent des conditions générales sous lesquelles une variable aléatoire de loi compliquée converge, en loi, vers une variable aléatoire de loi plus aisée. Et quand cela a été possible, nous avons aussi cherché à associer des vitesses de convergence. Les outils utilisés sont reliés a un domaine de recherche récent, appelé approche de Malliavin-Stein. En 2005, Nualart et Peccati ont découvert un théorème limite surprenant (qui porte aujourd'hui le nom de théorème du moment quatrième) pour les suites d'intégrales multiples de Wiener-Itô: pour de telles suites et après renormalisation, la convergence en loi vers la gaussienne standard se trouve être équivalente à la convergence du seul moment quatrième. Peu de temps après la publication de ce joli résultat, Peccati et Tudor l'ont étendu au cadre multivarié. Et, depuis, de nombreuses améliorations et nouveaux développements sont apparus dans la littérature, notamment un article de Nourdin et Peccati qui, pour la première fois, a combiné la méthode de Stein avec le calcul de Malliavin, offrant ainsi un cadre dans lequel il est maintenant possible d'associer une vitesse de convergence au théorème du moment quatrième. Nous nous intéressons dans cette thèse à la distance en variation totale entre les lois de deux intégrales doubles de Wiener-Itô. Nous améliorons des résultats antérieurs dus à Davydov et Martinova . Puis on étudie le comportement asymptotique des variations croisées d'un processus bidimensionnel ayant la forme d'une intégrale de Young. Finalement, on établit la convergence multivariée de certains processus de Volterra construits à partir du mouvement brownien fractionnaire. / The thesis deals with the probabilistic approximation in a fractional context, which means in models connected in one way or another to the fractional Brownian motion. The common denominator of our results is that they offer general conditions under which a random variable having a complicated law converges in law to a random variable with easier law. And when this was possible, we have also associated convergence rates. The tools are linked to a recent research field, called Malliavin-Stein approach. In 2005, Nualart and Peccati have discovered a surprising limit theorem (known as the fourth moment theorem) for series of multiple Wiener-Itô integrals: for such series and after renormalization, convergence in distribution to standard Gaussian happens to be equivalent to the convergence of the fourth moment only. Shortly after the publication of this nice result, Peccati and Tudor have extended it to the multivariate case. And since many improvements and new developments have appeared in the literature, including an article by Nourdin and Peccati which for the first time combined the method of Stein with the Malliavin calculus, providing a framework in which it is now possible to associate a rate of convergence to the fourth moment theorem. We focus in this thesis on the total variation distance between the laws of two double Wiener-Itô integrals. We improve a previous result of Davydov and Martinova. Then we study the asymptotic behavior of a two-dimensional cross-variation process that has the form of a Young integral. Finally, a multivariate convergence is established of some Volterra processes built from the fractional Brownian motion.
|
28 |
Etude de diffusions à valeurs dans des variétés lorentziennes.Angst, Jürgen 25 September 2009 (has links) (PDF)
L'objet de ce mémoire est l'étude de processus stochastiques à valeurs dans des variétés lorentziennes. En particulier, on s'intéresse au comportement asymptotique en temps long de ces processus et on souhaite voir en quoi celui-ci reflète la géométrie des variétés sous-jacentes. Nous limitons notre étude à celle de diffusions, c'est-à-dire de processus markoviens continus, à valeurs dans le fibré tangent unitaire de variétés lorentziennes fortement symétriques. L'introduction et l'étude de tels processus ont des motivations purement mathématiques mais aussi physiques. <br /><br />Ce mémoire est composé de deux parties. La première est consacrée à la preuve d'un théorème limite central pour une classe de diffusions minkowskiennes. Elle est motivée par des questions ouvertes de la littérature physique. La seconde partie du manuscrit est consacrée à l'étude détaillée d'une diffusion relativiste à valeurs dans les espaces de Robertson-Walker. En fonction de la courbure et de la vitesse d'expansion de ces espaces, nous déterminons précisément le comportement asymptotique de la diffusion relativiste et montrons que ses trajectoires approchent asymptotiquement des géodésiques de lumière aléatoires. Pour une classe d'espaces de Robertson-Walker, nous explicitons en outre la frontière de Poisson de la diffusion relativiste.
|
29 |
Estimation non-paramétrique d'une densité k-monotone: Une nouvelle théorie de distribution asymptotique.Balabdaoui, Fadoua 26 April 2004 (has links) (PDF)
Nous considérons l'estimation non-paramétrique d'une densité k-monotone définie sur (0,∞), pour un entier k > 0 donné, via les méthodes de maximum de vraisemblance et des moindres carrés qu'on note respectivement par MLE et LSE.<br /><br />Dans l'introduction, nous présentons tout d'abord la motivation principale derrière ce problème et nous faisons l'effort d'inclure dans le cadre général de notre travail les résultats asymptotiques qui étaient déjà établis pour les cas spéciaux k=1 et k=2.<br /> <br />Ensuite, nous nous penchons sur l'étude des propriétés des MLE et LSE d'une densité k-monotone g_0 dans le cas où on dispose de n observations indépendantes générées de g_0. Notre étude asymptotique est locale, c'est-à-dire que nous nous intéressons uniquement aux propriétés asymptotiques des estimateurs et de leur dérivées à un point fixe, x_0. Sous certaines hypothèses que nous précisons, nous établissons d'abord les bornes inférieures minimax pour l'estimation des dérivées g^{(j)}_0(x_0), j=0,...,k-1. Les bornes obtenues indiquent que n^{-(k-j)/(2k+1)} est la vitesse de convergence optimale de n'importe quel estimateur non-paramétrique de g^{(j)}_0(x_0). Sous les mêmes hypothèses et si une certaine conjecture est vraie, nous démontrons que cette vitesse optimale est atteinte dans le cas des MLE et LSE.<br /><br />Pour compléter la théorie asymptotique des estimateurs et de leur dérivées au point x_0, nous passons à la dérivation de leurs distributions limites lorsque la taille de l'échantillon n tend vers l'infini. Il s'avère que ces distributions dépendent d'un processus stochastique bien particulier défini sur l'ensemble des réels R. On note ce processus par H_k Le 3ème chapitre est consacré essentiellement à l'existence et à l'unicité de H_k, ainsi qu'à sa caractérisation. Nous démontrons que si Y_k est la primitive (k-1)-ème d'un mouvement Brownien + k!/(2k)! t^{2k}, alors H_k reste au-dessus (au-dessous) de Y_k lorsque k est pair (impair). Un simple changement de variable suffit pour reconnaître que nos résultats comprennent les cas spéciaux k=1 et k=2 où le problème se réduit à l'estimation d'une densité décroissante et d'une densité décroissante et convexe respectivement. Pour ces cas-là, la théorie asymptotique des MLE et LES a été déjà établie.<br /><br />L'aspect algorithmique fait l'objet du 4ème chapitre. Les algorithmes de Splines itératifs (Iterative Spline algorithms) sont développés et implémentés afin de calculer les estimateurs et aussi pour obtenir une approximation du processus limite sur n'importe quel compact dans R. Ces algorithmes exploitent essentiellement la structure 'splineuse' des MLE, LSE et H_k, et se basent ainsi sur la suppression et l'addition itératives des noeuds de certains Splines aléatoires.
|
30 |
Statistiques d'extrêmes du mouvement brownien et applicationsRandon-Furling, Julien 13 November 2009 (has links) (PDF)
L'objet de cette thèse est l'étude de problèmes faisant intervenir les extrema du mouvement brownien en dimension 1 et 2. En dimension 1, y sont obtenues, en particulier, les distributions jointes du maximum et du temps d'atteinte de ce maximum pour n mouvements browniens indépendants sur un intervalle de temps fixé. En dimension 2, à l'aide des résultats en dimension 1, sont obtenues les valeurs moyennes du périmètre et de l'aire de l'enveloppe convexe de n chemins browniens indépendants, ouverts ou fermés. Quelques applications de ces résultats théoriques sont également présentées.
|
Page generated in 0.0364 seconds