• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Positional games on graphs / Pozicione igre na grafovima

Mikalački Mirjana 20 February 2014 (has links)
<p>\section*{Abstract}<br />We study Maker-Breaker games played on the edges of the complete graph on $n$ vertices, $K_n$, whose family of winning sets $\cF$ consists of all edge sets of subgraphs $G\subseteq K_n$ which possess a predetermined monotone increasing property. Two players, Maker and Breaker, take turns in claiming $a$, respectively $b$, unclaimed edges per move. We are interested in finding the threshold bias $b_{\cF}(a)$ for all values of $a$, so that for every $b$, $b\leq b_{\cF}(a)$, Maker wins the game and for all values of $b$, such that $b&gt;b_{\cF}(a)$, Breaker wins the game. We are particularly interested in cases where both $a$ and $b$ can be greater than $1$. We focus on the \textit{Connectivity game}, where the winning sets are the edge sets of all spanning trees of $K_n$ and on the&nbsp; \textit{Hamiltonicity game}, where the winning sets are the edge sets of all Hamilton cycles on $K_n$.<br /><br />Next, we consider biased $(1:b)$ Avoider-Enforcer games, also played on the edges of $K_n$. For every constant $k\geq 3$ we analyse the $k$-star game, where Avoider tries<br />to avoid claiming $k$ edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games, the strict and the monotone, and for each provide explicit winning strategies for both players. Consequentially, we establish bounds on the threshold biases $f^{mon}_\cF$, $f^-_\cF$ and $f^+_\cF$, where $\cF$ is the hypergraph of the game (the family of target sets).<br />We also study the monotone version of $K_{2,2}$-game, where Avoider wants to avoid claiming all the edges of some graph isomorphic to $K_{2,2}$ in $K_n$.&nbsp;&nbsp;</p><p>Finally, we search for the fast winning strategies for Maker in Perfect matching game and Hamiltonicity game, again played on the edge set of $K_n$. Here, we look at the biased $(1:b)$ games, where Maker&#39;s bias is 1, and Breaker&#39;s bias is $b, b\ge 1$.</p> / <p>\section*{Izvod}</p><p>Prou\v{c}avamo takozvane Mejker-Brejker (Maker-Breaker) igre koje se igraju na granama kompletnog grafa sa $n$ \v{c}vorova, $K_n$, \v{c}ija familija pobedni\v{c}kih skupova $\cF$ obuhvata sve skupove grana grafa $G\subseteq K_n$ koji imaju neku monotono rastu\&#39;{c}u osobinu. Dva igra\v{c}a, \textit{Mejker} (\textit{Pravi\v{s}a}) i \textit{Brejker} (\textit{Kva\-ri\-\v{s}a}) se smenjuju u odabiru $a$, odnosno $b$, slobodnih grana po potezu. Interesuje nas da prona\dj emo grani\v{c}ni bias $b_{\cF}(a)$ za sve vrednosti pa\-ra\-me\-tra $a$, tako da za svako $b$, $b\le b_{\cF}(a)$, Mejker pobe\dj uje u igri, a za svako $b$, takvo da je $b&gt;b_{\cF}(a)$, Brejker pobe\dj uje. Posebno nas interesuju slu\v{c}ajevi u kojima oba parametra $a$ i $b$ mogu imati vrednost ve\&#39;cu od 1. Na\v{s}a pa\v{z}nja je posve\&#39;{c}ena igri povezanosti, gde su pobedni\v{c}ki skupovi&nbsp; grane svih pokrivaju\&#39;cih stabala grafa $K_n$, kao i igri Hamiltonove konture, gde su pobedni\v{c}ki skupovi grane svih Hamiltonovih kontura grafa $K_n$.</p><p>Zatim posmatramo igre tipa Avojder-Enforser (Avoider-Enforcer), sa biasom $(1:b)$, koje se tako\dj e igraju na granama kompletnog grafa sa $n$ \v{c}vorova, $K_n$. Za svaku konstantu $k$, $k\ge 3$ analiziramo igru $k$-zvezde (zvezde sa $k$ krakova), u kojoj \textit{Avojder} poku\v{s}va da izbegne da ima $k$ svojih grana incidentnih sa istim \v{c}vorom. Posmatramo obe verzije ove igre, striktnu i monotonu, i za svaku dajemo eksplicitnu pobedni\v{c}ku strategiju za oba igra\v{c}a. Kao rezultat, dobijamo gornje i donje ograni\v{c}enje za grani\v{c}ne biase $f^{mon}_\cF$, $f^-_\cF$ i $f^+_\cF$, gde $\cF$ predstavlja hipergraf igre (familija ciljnih skupova).<br />%$f^{mon}$, $f^-$ and $f^+$.<br />Tako\dj e, posmatramo i monotonu verziju $K_{2,2}$-igre, gde Avojder \v{z}eli da izbegne da graf koji \v{c}ine njegove grane sadr\v{z}i graf izomorfan sa $K_{2,2}$.</p><p>Kona\v{c}no, \v{z}elimo da prona\dj emo strategije za brzu pobedu Mejkera u igrama savr\v{s}enog me\v{c}inga i Hamiltonove konture, koje se tako\dj e igraju na granama kompletnog grafa $K_n$. Ovde posmatramo asimetri\v{c}ne igre gde je bias Mejkera 1, a bias Brejkera $b$, $b\ge 1$.</p>

Page generated in 0.0217 seconds