• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Purely top-down software rebuilding

Grosskurth, Alan January 2007 (has links)
Software rebuilding is the process of deriving a deployable software system from its primitive source objects. A build tool helps maintain consistency between the derived objects and source objects by ensuring that all necessary build steps are re-executed in the correct order after a set of changes is made to the source objects. It is imperative that derived objects accurately represent the source objects from which they were supposedly constructed; otherwise, subsequent testing and quality assurance is invalidated. This thesis aims to advance the state-of-the-art in tool support for automated software rebuilding. It surveys the body of background work, lays out a set of design considerations for build tools, and examines areas where current tools are limited. It examines the properties of a next-generation tool concept, redo, conceived by D. J. Bernstein; redo is novel because it employs a purely top-down approach to software rebuilding that promises to be simpler, more flexible, and more reliable than current approaches. The details of a redo prototype written by the author of this thesis are explained including the central algorithms and data structures. Lastly, the redo prototype is evaluated on some sample software systems with respect to migration effort between build tools as well as size, complexity, and performances aspects of the resulting build systems.
2

Purely top-down software rebuilding

Grosskurth, Alan January 2007 (has links)
Software rebuilding is the process of deriving a deployable software system from its primitive source objects. A build tool helps maintain consistency between the derived objects and source objects by ensuring that all necessary build steps are re-executed in the correct order after a set of changes is made to the source objects. It is imperative that derived objects accurately represent the source objects from which they were supposedly constructed; otherwise, subsequent testing and quality assurance is invalidated. This thesis aims to advance the state-of-the-art in tool support for automated software rebuilding. It surveys the body of background work, lays out a set of design considerations for build tools, and examines areas where current tools are limited. It examines the properties of a next-generation tool concept, redo, conceived by D. J. Bernstein; redo is novel because it employs a purely top-down approach to software rebuilding that promises to be simpler, more flexible, and more reliable than current approaches. The details of a redo prototype written by the author of this thesis are explained including the central algorithms and data structures. Lastly, the redo prototype is evaluated on some sample software systems with respect to migration effort between build tools as well as size, complexity, and performances aspects of the resulting build systems.
3

Minimumkrav för ett CI-system

Kiendys, Petrus, Al-Zara, Shadi January 2015 (has links)
När en grupp utvecklare jobbar med samma kodbas kan konflikter uppstå med avseende på implementationen av moduler eller delsystem som varje utvecklare individuellt jobbar på. Dessa konflikter måste snabbt lösas för att projektet ska fortskrida och inte stagnera. Utvecklare som sällan kommunicerar framför ofta okompatibla moduler eller delsystem som kan vara svåra eller omöjliga att integrera i kodbasen, detta leder ofta till s.k. “integration hell” där det kan ta väldigt lång tid att anpassa ny kod till en befintlig kodbas.En strategi som man kan ta till är “continuous integration”, ett arbetssätt som erbjuder en rad fördelar när man jobbar i grupp på en gemensam kodbas. Continuous integration är möjligt att tillämpa utan verktyg eftersom detta är ett arbetssätt. Däremot kan processen stödjas av ett s.k. “CI-system” som är något av en teknisk implementation eller påtagligt införlivande och stöd för arbetsmetoden “continuous integration”.Denna rapport syftar till att ge en inblick i vad ett CI-system är och vad den principiellt består av. Vi undersöker vad ett CI-system absolut måste bestå av genom en litteraturundersökning och en marknadsundersökning. Vi ställer upp dessa beståndsdelar som “funktionella” och “icke-funktionella” krav för ett typiskt CI-system. Vi kan på så vis kvantifiera och kategorisera olika komponenter och funktionaliteter som bör innefattas i ett typiskt CI-system. I denna rapport finns även ett bihang som visar hur man kommer igång med att bygga en egen CI-server mha. CI-systemmjukvaran “TeamCity”.Slutsatsen av vår rapport är att CI-system är ett viktigt redskap som kan underlätta mjukvaruutveckling. Med hjälp av CI-system kan man stödja utvecklingsprocessen genom att bl.a. förhindra integrationsproblem, automatisera vissa delar av arbetsprocessen (kompilering av källkod, testning av mjukvara, notifikation om stabilitet av kodbas och distribution av färdig mjukvara) samt snabbt hitta och lösa integrationsfel. / When a group of developers work on the same code base, conflicts may arise regarding the implementation of modules or subsystems that developers individually work on. These conflicts have to be resolved quickly in order for the project to advance at a steady pace. Developers who do not communicate changes or other necessary deviations may find themselves in a situation where new or modified modules or subsystems are impossible or very difficult to integrate into the mainline code-base. This often leads to so called “integration hell” where it could take huge amounts of time to adapt new code into the current state of the code-base. One strategy, which can be deployed to counteract this trend is called “continuous integration”. This practice offers a wide range of advantages when a group of developers collaborates on writing clean and stable code. Continuous integration can be put into practice without the use of any tools as it is a “way to do things” rather than an actual tool. With that said, it is possible to support the practice with a tangible tool called a CI-system.This study aims to give insight into the makings of a CI-system and what it fundamentally consists of and has to be able to do. A study of contemporary research reports regarding the subject and a survey was performed in order to substantiate claims and conclusions. Core characteristics of CI-systems are grouped into “functional requirements” and “non-functional requirements (quality attributes)”. By doing this, it is possible to quantify and categorize various core components and functionalities of a typical CI-system. This study also contains an attachment which provides instructions of how to get started with implementing your own CI-server using the CI-system software ”TeamCity”. The conclusion of this study is that a CI-system is an important tool that enables a more efficient software development process. By making use of CI-systems developers can refine the development process by preventing integration problems, automating some parts of the work process (build, test, feedback, deployment) and quickly finding and solving integration issues.
4

Programming tools for intelligent systems

Considine, Breandan 04 1900 (has links)
Les outils de programmation sont des programmes informatiques qui aident les humains à programmer des ordinateurs. Les outils sont de toutes formes et tailles, par exemple les éditeurs, les compilateurs, les débogueurs et les profileurs. Chacun de ces outils facilite une tâche principale dans le flux de travail de programmation qui consomme des ressources cognitives lorsqu’il est effectué manuellement. Dans cette thèse, nous explorons plusieurs outils qui facilitent le processus de construction de systèmes intelligents et qui réduisent l’effort cognitif requis pour concevoir, développer, tester et déployer des systèmes logiciels intelligents. Tout d’abord, nous introduisons un environnement de développement intégré (EDI) pour la programmation d’applications Robot Operating System (ROS), appelé Hatchery (Chapter 2). Deuxièmement, nous décrivons Kotlin∇, un système de langage et de type pour la programmation différenciable, un paradigme émergent dans l’apprentissage automatique (Chapter 3). Troisièmement, nous proposons un nouvel algorithme pour tester automatiquement les programmes différenciables, en nous inspirant des techniques de tests contradictoires et métamorphiques (Chapter 4), et démontrons son efficacité empirique dans le cadre de la régression. Quatrièmement, nous explorons une infrastructure de conteneurs basée sur Docker, qui permet un déploiement reproductible des applications ROS sur la plateforme Duckietown (Chapter 5). Enfin, nous réfléchissons à l’état actuel des outils de programmation pour ces applications et spéculons à quoi pourrait ressembler la programmation de systèmes intelligents à l’avenir (Chapter 6). / Programming tools are computer programs which help humans program computers. Tools come in all shapes and forms, from editors and compilers to debuggers and profilers. Each of these tools facilitates a core task in the programming workflow which consumes cognitive resources when performed manually. In this thesis, we explore several tools that facilitate the process of building intelligent systems, and which reduce the cognitive effort required to design, develop, test and deploy intelligent software systems. First, we introduce an integrated development environment (IDE) for programming Robot Operating System (ROS) applications, called Hatchery (Chapter 2). Second, we describe Kotlin∇, a language and type system for differentiable programming, an emerging paradigm in machine learning (Chapter 3). Third, we propose a new algorithm for automatically testing differentiable programs, drawing inspiration from techniques in adversarial and metamorphic testing (Chapter 4), and demonstrate its empirical efficiency in the regression setting. Fourth, we explore a container infrastructure based on Docker, which enables reproducible deployment of ROS applications on the Duckietown platform (Chapter 5). Finally, we reflect on the current state of programming tools for these applications and speculate what intelligent systems programming might look like in the future (Chapter 6).

Page generated in 0.0841 seconds