• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy Efficient RPL Routing Protocol in Smart Buildings

Rezaei, Elnaz January 2014 (has links)
Energy is an important factor that must be considered by multi-hop wireless mesh routing protocols because most sensors are powered by batteries with a limited capacity. We focus on the industry-standard RPL (Routing Protocol over Low-power and lossy networks) routing protocol that must find energy-efficient paths in low-power and lossy networks. However, the existing RPL objective functions route based on hop-count and ETX (expected transmission count) metrics alone, ignoring the energy cost of data transmission and reception. We address this issue in two ways. First, we design an objective function for RPL that finds paths that require, in expectation, the minimum amount of energy. Second, we design a probing mechanism which configures the transmission power of sensors to minimize energy consumption. The proposed approach is implemented and evaluated using simulations as well as on a small testbed with two Zolertial Z1 motes.
2

The measured energy efficiency and thermal environment of a UK house retrofitted with internal wall insulation

Tink, Victoria J. January 2018 (has links)
Approximately 30% of the UK s housing stock is comprised of older, solid wall buildings. Solid walls have no cavity and were built without insulation; therefore these buildings have high heat loss, can be uncomfortable for occupants throughout the winter and require an above-average amount of energy to heat. Solid wall buildings can be made more energy efficient by retrofitting internal wall insulation (IWI). However, there is little empirical evidence on how much energy can be saved by insulating solid wall buildings and there are concerns that internal wall insulation could lead to overheating in the summer. This thesis reports measured results obtained from a unique facility comprised of a matched pair of unoccupied, solid wall, semi-detached houses. In the winter of 2015 one house of the pair was fitted with internal wall insulation then both houses had their thermal performance measured to see how differently they behaved. Measuring the thermal performance was the process of measuring the wall U-values, the whole house heat transfer coefficient and the whole house airtightness of the original and insulated houses. Both houses were then monitored in the winter of 2015, monitoring was the process of measuring the houses energy demand while using synthetic occupancy to create normal occupancy conditions. In the summer of 2015 indoor temperatures were monitored in the houses to assess overheating. The monitoring was done firstly to see how differently an insulated and an uninsulated house perform under normal operating conditions: with the blinds open through the day and the windows closed. Secondly, a mitigation strategy was applied to reduce high indoor operative temperatures in the houses, which involved closing the blinds in the day to reduce solar gains and opening the windows at night to purge warm air from the houses. The original solid walls were measured to have U-values of 1.72 W/m2K, while with internal wall insulation the walls had U-values of 0.21 W/m2K, a reduction of 88%. The house without IWI had a heat transfer coefficient of 238 W/K; this was reduced by 39% to 144 W/K by installing IWI. The monitored data from winter was extrapolated into yearly energy demand; the internally insulated house used 52% less gas than before retrofit. The measured U-values, whole house heat loss and energy demand were all compared to those produced from RdSAP models. The house was found to be more energy efficient than expected in its original state and to continue to use less energy than modelled once insulated. This has important implications for potential carbon savings and calculating pay-back times for retrofit measures. In summer, operative temperatures in the living room and main bedroom were observed to be higher, by 2.2 oC and 1.5 oC respectively, in the internally insulated house in comparison to the uninsulated house. Both of these rooms overheated according to CIBSE TM52 criteria; however the tests were conducted during an exceptionally warm period of weather. With the simple mitigation strategy applied the indoor operative temperature in the internally insulated house was reduced to a similar level as observed in the uninsulated house. This demonstrates that any increased overheating risk due to the installation of internal wall insulation can be mitigated through the use of simple, low cost mitigation measures. This research contributes field-measured evidence gathered under realistic controlled conditions to show that internal wall insulation can significantly reduce the energy demand of a solid wall house; this in turn can reduce greenhouse gas emissions and could help alleviate fuel poverty. Further to this it has been demonstrated that in this archetype and location IWI would cause overheating only in unusually hot weather and that indoor temperatures can be reduced to those found in an uninsulated house through the use of a simple and low cost mitigation strategy. It is concluded that IWI can provide a comfortable indoor environment, and that overheating should not be considered a barrier to the uptake of IWI in the UK.
3

New simplified thermal and HVAC design tools for building designers

Ellis, Michael Wayne 17 January 2007 (has links)
Please read the abstract in the section 00front of this document / Thesis (PhD (Mechanical Engineering))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
4

Energy performance regulations and methodologies of energy saving in office buildings in southern Europe

Tsave, A. January 2009 (has links)
The Directive 2002/91/EC of the European Parliament and Council on energy performance of buildings entered into force on 4th January 2003, setting the minimum requirements of energy performance. All Member States had to incorporate the requirements of the new directive in national legislation by January 2006 and build up relevant systems and measures to transpose and implement these requirements. The stage of Directive’s implementation in the countries of Southern Europe is reported because of the similar climatic conditions and the geographical location for a future enforcement in Greece, as the building code in Greece is still under development. As energy use in buildings accounts for about 40% of the final energy demand in the European Union, the application of building standards can achieve a reduction in electric energy consumption and therefore an increase in energy performance of buildings. A record of the electric energy consumption of office buildings in the four Prefectures of Crete is implemented aiming at a future energy saving, which may be obtained by either through increased efficiency or by reducing electric energy consumption.

Page generated in 0.1179 seconds