• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização de parâmetros de projeto de tubulações de sistemas de calefação por piso radiante. / Optimization of piping design parameters for a radiant floor heating system.

Díaz Rastello, María Carolina 02 September 2013 (has links)
Devido à climatização dos ambientes internos condicionar o bem estar e o conforto térmico das pessoas é que se fazem necessárias novas pesquisas que procurem potencializar as tecnologias existentes e reduzir tanto os custos de instalação quanto o consumo de energia. É sabido que os sistemas convencionais de calefação proporcionam um alto consumo de energia e uma emissão de níveis de ruído muitas vezes inaceitáveis, entretanto os sistemas radiantes ganham, a cada dia, uma maior abrangência como alternativa de climatização devido às suas vantagens comparativas com relação aos sistemas convencionais. O emprego de sistemas de calefação por piso radiante em muitos países é limitada pelo preço da instalação como consequência do elevado custo dos materiais como é o caso da fabricação das tubulações. Estas geralmente são fabricadas de polietileno ou de cobre, sendo este ultimo o que entrega um maior desempenho térmico e, por conseguinte um melhor fornecimento de energia, mas o elevado custo deste material restringe o seu uso principalmente ao setor residencial, podendo atingir um mercado maior que compreenda edifícios públicos, de escritório, escolas, hospitais, etc. Com isso, este trabalho procura reduzir a quantidade de materiais de tubulação necessários para garantir o desempenho do sistema e o conforto térmico de uma habitação aquecida com um sistema radiante. Para isto, foi desenvolvida a resolução numérica do modelo matemático da transferência de calor no interior do piso pelo método dos volumes finitos na formulação implícita e implementada em código computacional na linguagem Matlab. Para isto, foram considerados dois parâmetros fundamentais para garantir o conforto térmico da habitação que correspondem à temperatura da água e a distancia entre os tubos que compõem o sistema. A análise corresponde ao cálculo da temperatura superficial do piso para distintas temperaturas da água e distintas distâncias, obtendo resultados interessantes que permitem reduzir o custo da instalação em até um 40%. / Due to temperature control of interiors conditioning the well-being and the thermal comfort of people, it is necessary to make new researches aiming to improve the existing technologies and to reduce both installation costs and energy consumption. It is known that the use of traditional heating systems involves high energy consumption and, in some cases, unacceptable noise levels; while radiant systems are gaining a wider scope as a heating alternative due to its advantages compared to conventional systems. The use of radiant floor heating systems in Brazil is limited by installation cost due to the high price of required materials. This fact restricts the use of these systems primarily to the residential sector. However, it may be possible for this technology to reach a larger market, including public buildings, offices, schools and hospitals. Therefore, to optimize the most relevant design parameters relating to the thermal performance of the system and reduce both the amount of required materials and the system operating time, this paper elaborates on a method consisting of a high-resolution numerical mathematical model of the heat transfer within a floor using a finite control volume method with an implicit solution scheme. In this work, we consider how the properties of the materials, environmental thermal comfort factors and the performance of the system work together with the theoretical underpinnings of the heat transfer phenomenon to define the design parameters to optimize the materials and provide greater control over the energy consumption. This optimization is achieved without changing any environmental thermal comfort conditions or the well-being of the occupants. Finally, a numerical solution for the heat transfer within the floor is implemented using the computer code Matlab.
2

PROJETO E ANÁLISE DA EFICIÊNCIA DE UM SISTEMA SOLAR MISTO DE AQUECIMENTO DE ÁGUA E DE CONDICIONAMENTO TÉRMICO DE EDIFICAÇÕES PARA SANTA MARIA - RS / DESIGN AND ANALYSIS OF THE EFFICIENCY OF A MIXED SOLAR WATER HEATING AND THERMAL CONDITIONING OF BUILDINGS FOR A SANTA MARIA-RS

Russi, Madalena 07 March 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The use of solar energy in buildings, to improve the comfort environmental conditions implies in the reduction of energy consumption. Since this is a clean, renewable and abundant energy, the use of design strategies that use the sun's energy makes the buildings more sustainable. This study aimed to develop a combined system that captures solar energy on the roof of buildings, then using this energy in two different purposes. A fraction of this power is used for heating water, and the other portion is destined for building thermal conditioning in cold periods, through a heating system that inflating the heated air. First of all, it was defined a preproject of the combined system, considering the constraints of the project and analyzed the appropriated materials and their thermal characteristics that would be used in various parts of the system. Based on this pre-design and review of the literature was possible to develop a mathematical model to evaluate the applicability of the system in the climate it was proposed, which was performed considering the July's climatic data. The results obtained shows that the heating subsystem could elevate the temperature within the residence up to 7 ° C at most, and for about 30% of hours to let the building's temperature achieved thermal comfort. In the water heating Subsystem, in the month of July, the temperature increased by 5.5 ° C and in the months of December, January, February and March the water temperature exceeds 35 ° C, we can consider that the hot water demand in these months is met without the use of electricity. Considering the month adopted as July, a month with limited solar irradiance of the year, for study pourpose, this combined system showed positive results, which will also improve for other months of the year. / O aproveitamento da energia solar em edificações, para melhoria das condições ambientais de conforto, implica na redução do consumo de energia elétrica. Considerando que essa é uma energia limpa, renovável e abundante, o uso de estratégias de projeto que utilizam da energia do sol torna as edificações mais sustentáveis. O presente trabalho teve como objetivo desenvolver um sistema combinado que faz a captação de energia solar no telhado das edificações, aplicando essa energia em dois propósitos diferentes. Uma fração dessa carga térmica é utilizada para o aquecimento da água de consumo, e outra parcela é destinada para o condicionamento térmico da edificação nos períodos frios, através de um sistema de calefação dos ambientes pelo insuflamento do ar aquecido. Foi definido primeiramente um pré-projeto do sistema combinado, sendo consideradas as condicionantes do projeto e analisados os materiais mais adequados quanto as suas características térmicas para utilização nas diversas partes do sistema. Baseado neste pré-projeto e na revisão de literatura foi possível desenvolver a modelagem matemática para avaliação da aplicabilidade do sistema para o clima para o qual foi proposto, a qual foi realizada considerando os dados climáticos do mês de julho. Os resultados obtidos demonstram que o subsistema de calefação conseguiu elevar a temperatura no interior da residência em até 7 oC no pico máximo, e durante aproximadamente 30% das horas conseguiu deixar a temperatura da edificação em conforto térmico. No subsistema de aquecimento de água, para o mês de julho, a temperatura aumentou em 5,5 oC, nos meses de dezembro, janeiro, fevereiro e março a temperatura da água ultrapassa os 35 oC, podemos considerar, que a demanda de água quente, nesses meses seja suprida sem o uso de energia elétrica. Considerando que o mês adotado é julho, mês com irradiância solar mais limitada do ano, para a região do estudo, o sistema combinado proposto apresentou resultados positivos, os quais vão ainda melhorar para os outros meses do ano.
3

Otimização de parâmetros de projeto de tubulações de sistemas de calefação por piso radiante. / Optimization of piping design parameters for a radiant floor heating system.

María Carolina Díaz Rastello 02 September 2013 (has links)
Devido à climatização dos ambientes internos condicionar o bem estar e o conforto térmico das pessoas é que se fazem necessárias novas pesquisas que procurem potencializar as tecnologias existentes e reduzir tanto os custos de instalação quanto o consumo de energia. É sabido que os sistemas convencionais de calefação proporcionam um alto consumo de energia e uma emissão de níveis de ruído muitas vezes inaceitáveis, entretanto os sistemas radiantes ganham, a cada dia, uma maior abrangência como alternativa de climatização devido às suas vantagens comparativas com relação aos sistemas convencionais. O emprego de sistemas de calefação por piso radiante em muitos países é limitada pelo preço da instalação como consequência do elevado custo dos materiais como é o caso da fabricação das tubulações. Estas geralmente são fabricadas de polietileno ou de cobre, sendo este ultimo o que entrega um maior desempenho térmico e, por conseguinte um melhor fornecimento de energia, mas o elevado custo deste material restringe o seu uso principalmente ao setor residencial, podendo atingir um mercado maior que compreenda edifícios públicos, de escritório, escolas, hospitais, etc. Com isso, este trabalho procura reduzir a quantidade de materiais de tubulação necessários para garantir o desempenho do sistema e o conforto térmico de uma habitação aquecida com um sistema radiante. Para isto, foi desenvolvida a resolução numérica do modelo matemático da transferência de calor no interior do piso pelo método dos volumes finitos na formulação implícita e implementada em código computacional na linguagem Matlab. Para isto, foram considerados dois parâmetros fundamentais para garantir o conforto térmico da habitação que correspondem à temperatura da água e a distancia entre os tubos que compõem o sistema. A análise corresponde ao cálculo da temperatura superficial do piso para distintas temperaturas da água e distintas distâncias, obtendo resultados interessantes que permitem reduzir o custo da instalação em até um 40%. / Due to temperature control of interiors conditioning the well-being and the thermal comfort of people, it is necessary to make new researches aiming to improve the existing technologies and to reduce both installation costs and energy consumption. It is known that the use of traditional heating systems involves high energy consumption and, in some cases, unacceptable noise levels; while radiant systems are gaining a wider scope as a heating alternative due to its advantages compared to conventional systems. The use of radiant floor heating systems in Brazil is limited by installation cost due to the high price of required materials. This fact restricts the use of these systems primarily to the residential sector. However, it may be possible for this technology to reach a larger market, including public buildings, offices, schools and hospitals. Therefore, to optimize the most relevant design parameters relating to the thermal performance of the system and reduce both the amount of required materials and the system operating time, this paper elaborates on a method consisting of a high-resolution numerical mathematical model of the heat transfer within a floor using a finite control volume method with an implicit solution scheme. In this work, we consider how the properties of the materials, environmental thermal comfort factors and the performance of the system work together with the theoretical underpinnings of the heat transfer phenomenon to define the design parameters to optimize the materials and provide greater control over the energy consumption. This optimization is achieved without changing any environmental thermal comfort conditions or the well-being of the occupants. Finally, a numerical solution for the heat transfer within the floor is implemented using the computer code Matlab.

Page generated in 0.045 seconds