• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Analysis of Camera Calibration for Voxel Coloring Including the Effect of Calibration on Voxelization Errors

Waddell, Elwood Talmadge Jr. 01 January 2002 (has links)
This thesis characterizes the problem of relative camera calibration in the context of three-dimensional volumetric reconstruction. The general effects of camera calibration errors on different parameters of the projection matrix are well understood. In addition, calibration error and Euclidean world errors for a single camera can be related via the inverse perspective projection. However, there has been little analysis of camera calibration for a large number of views and how those errors directly influence the accuracy of recovered three-dimensional models. A specific analysis of how camera calibration error is propagated to reconstruction errors using traditional voxel coloring algorithms is discussed. A review of the Voxel coloring algorithm is included and the general methods applied in the coloring algorithm are related to camera error. In addition, a specific, but common, experimental setup used to acquire real-world objects through voxel coloring is introduced. Methods for relative calibration for this specific setup are discussed as well as a method to measure calibration error. An analysis of effect of these errors on voxel coloring is presented, as well as a discussion concerning the effects of the resulting world-space error.
2

Large volume artefact for calibration of multi-sensor projected fringe systems

Tarvaz, Tahir January 2015 (has links)
Fringe projection is a commonly used optical technique for measuring the shapes of objects with dimensions of up to about 1 m across. There are however many instances in the aerospace and automotive industries where it would be desirable to extend the benefits of the technique (e.g., high temporal and spatial sampling rates, non-contacting measurements) to much larger measurement volumes. This thesis describes a process that has been developed to allow the creation of a large global measurement volume from two or more independent shape measurement systems. A new 3-D large volume calibration artefact, together with a hexapod positioning stage, have been designed and manufactured to allow calibration of volumes of up to 3 x 1 x 1 m3. The artefact was built from carbon fibre composite tubes, chrome steel spheres, and mild steel end caps with rare earth rod magnets. The major advantage over other commonly used artefacts is the dimensionally stable relationship between features spanning multiple individual measurement volumes, thereby allowing calibration of several scanners within a global coordinate system, even when they have non-overlapping fields of view. The calibration artefact is modular, providing the scalability needed to address still larger measurement volumes and volumes of different geometries. Both it and the translation stage are easy to transport and to assemble on site. The artefact also provides traceabitity for calibration through independent measurements on a mechanical CMM. The dimensions of the assembled artefact have been found to be consistent with those of the individual tube lengths, demonstrating that gravitational distortion corrections are not needed for the artefact size considered here. Deformations due to thermal and hygral effects have also been experimentally quantified. The thesis describes the complete calibration procedure: large volume calibration artefact design, manufacture and testing; initial estimation of the sensor geometry parameters; processing of the calibration data from manually selected regions-of-interest (ROI) of the artefact features; artefact pose estimation; automated control point selection, and finally bundle adjustment. An accuracy of one part in 17 000 of the global measurement volume diagonal was achieved and verified.

Page generated in 0.159 seconds