• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatially-resolved studies of nearby star-forming galaxies

Kumari, Nimisha January 2018 (has links)
Spatially-resolved studies of nearby star-forming galaxies are essential to understand various physical and chemical phenomena at play in the interstellar medium in the galaxies, and consequently to obtain a comprehensive picture of galaxy formation and evolution. In this thesis, I perform spatially-resolved analyses of chemical abundances and star-formation in nearby star-forming galaxies - blue compact dwarf galaxies (BCDs) and spiral galaxies. I map various properties of H II regions and the surrounding gas within three BCDs, using integral field spectroscopic (IFS) data from the Gemini Multi-Object Spectrograph-North. While answering questions related to chemical homogeneity, ionisation mechanisms and stellar populations within BCDs, I address more profound issues, which go beyond the characterisation of studied BCDs and aim to explain global phenomena with broader implications. The BCD NGC 4449 hosts a metal-poor central star-forming region, which I explain by various scenarios related to the interplay between star-formation, metal-distribution and gas dynamics within galaxies. The BCD NGC 4670 shows an unusual negative relationship between the nitrogen-to-oxygen ratio and oxygen abundance at spatially-resolved scales. I explore this relation with chemical evolution models and by comparison to other star-forming galaxies and suggest that nitrogen enrichment, variations in star-formation efficiency or hydrodynamical effects may be responsible for the observed relation. For another BCD, SBS 1415+437, the spatially-resolved abundances on average agree with the integrated abundance, implying that low-redshift spatially-resolved results may be directly compared with unresolved high-redshift results. I study spiral galaxies to address long-standing issues related to the reliability of metallicity calibrators and the Schmidt Law of star-formation. Using IFS data of twenty-four spiral galaxies taken with the Multi-Unit Spectroscopic Explorer, I find that the current strong-line metallicity calibrators for H II regions are unsuitable for regions dominated by diffuse ionised gas (DIG). I devise new recipes for estimating the metal-content of the DIG. For another set of nine spiral galaxies, I use multi-wavelength data to show that the spatially-resolved Schmidt relation is very sensitive to the consideration of diffuse background, which is a component unrelated to the current star-formation. Removal of this component from the SFR tracers and the atomic gas results in similar local and global Schmidt relation. To conclude, the spatially-resolved analyses presented in this thesis have led to discoveries and further questions, which I will address in my ongoing and future works.

Page generated in 0.0481 seconds