• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tratamento térmico pré e pós-cura de diferentes compósitos: análise térmica, reistência à flexão e grau de conversão / Heat treatment pre and post cured of differents composites: thermal analysis, flexural strength and degree of conversion

Gomes, Mauricio Neves 04 June 2008 (has links)
O objetivo deste estudo é realizar a caracterização térmica, resistência à flexão e o grau de conversão de um compósito nanoparticulado (Filtek Supreme XT: FT) e um microhíbrido (Esthet X: ET), cor A2, submetidos a diferentes tratamentos térmicos. Os grupos experimentais foram: G1: sem tratamento; G2: pré-aquecimento à 68°C com dispositivo Calset; G3: pós-aquecimento em forno MP-130, 10°C/min até 140°C e G4: pré e pós-aquecimento. Depois da fotoativação, foram realizadas análise termogravimétrica e calorimetria exploratória diferencial (DSC) para determinar a estabilidade térmica dos compósitos, temperatura de transição vítrea (Tg), pico de exotermia e calor liberado após fotoativação. O ensaio de resistência à flexão foi realizado 24h após armazenagem dos corpos de prova em água destilada a 37°C. A análise do grau de conversão foi realizada com espectrofotômetro FT-Raman. Análise de variância e teste de Tukey (p<0,05) demonstraram que os compósitos FT e ET têm 25,8% e 23,7% de matriz orgânica em peso respectivamente e estabilidade térmica até 200°C. O pico exotérmico do G2 (63,5°C) é maior do que G1 (60,9°C). Os grupos G3 e G4 não apresentaram pico exotérmico e calor liberado. A tg é de aproximadamente 160,5°C para o FT e de 161,4°C para o ET. A resistência à flexão (MPa) e grau de conversão(%) foram respectivamente: G1 (149,1; 60)=G2(152,5; 56,4) e G3 (170,5; 72,6)=G4 (178,2; 71,8) . O compósito ET apresenta maior grau de conversão que FT. À partir da caracterização térmica foi possível observar que o pré-aquecimento em condições não isotérmicas não promoveu maior conversão e resistência à flexão. O tratamento térmico deve ser realizado acima de 160°C. / The aim of this study was to perform the thermal characterization,flexural strength and degree of conversion of two composites, a nanofilled (Filtek Supreme XT: FT) and a microhybrid (Esthet X: ET), shade A2, submitted to different thermal treatments. Methods: The experimental groups were: G1: no treatment; G2: preheated at 68°C with Calset device; G3: post-heated in a MP-130 (EDG) oven, 10 °C/min up to reach 140°C for 20min and G4: pre and post-heated. After curing, thermogravimetric analysis and differential scanning calorimetry (DSC) were carried to determine thermal stability of the composites, glass transition temperature (Tg), exothermic peak and heat releasing after photoactivation. Three-point flexural test was performed after stored in water at 37oC for 24 hours. Degree of conversion was determined using a spectrophotometer FT-Raman. Analysis of variance and Tukey\'s test (P<0.05) showed that FT and ET composites have 25.8% and 23.7% of organic matrix in weight respectively and thermal stability at 200°C. The G2 group release more heat (9.9J/g) than G1 (7.3J/g). Exothermic peak of G2 group (63.5°C) is higher than G1 (60.9°C). G3 and G4 groups did not show exothermic peak and heat releasing. ET composite of G2 group presented the highest exothermic peak (65.2°C) of all groups. The Tg is nearly 160.5°C to FT and 161.4°C to ET. Flexural strength (MPa) and degree of conversion (%) were respectively: G1(149.1; 60) = G2(152.5; 56.4) and G3 (170.5; 72.6) = G4 (178,2; 71,8). ET composite presented higher conversion values than FT. Pre-heating at non-isothermal conditions does not promote higher conversion and flexural strength. Heat treatment after cure can be carried through 160°C.
2

Tratamento térmico pré e pós-cura de diferentes compósitos: análise térmica, reistência à flexão e grau de conversão / Heat treatment pre and post cured of differents composites: thermal analysis, flexural strength and degree of conversion

Mauricio Neves Gomes 04 June 2008 (has links)
O objetivo deste estudo é realizar a caracterização térmica, resistência à flexão e o grau de conversão de um compósito nanoparticulado (Filtek Supreme XT: FT) e um microhíbrido (Esthet X: ET), cor A2, submetidos a diferentes tratamentos térmicos. Os grupos experimentais foram: G1: sem tratamento; G2: pré-aquecimento à 68°C com dispositivo Calset; G3: pós-aquecimento em forno MP-130, 10°C/min até 140°C e G4: pré e pós-aquecimento. Depois da fotoativação, foram realizadas análise termogravimétrica e calorimetria exploratória diferencial (DSC) para determinar a estabilidade térmica dos compósitos, temperatura de transição vítrea (Tg), pico de exotermia e calor liberado após fotoativação. O ensaio de resistência à flexão foi realizado 24h após armazenagem dos corpos de prova em água destilada a 37°C. A análise do grau de conversão foi realizada com espectrofotômetro FT-Raman. Análise de variância e teste de Tukey (p<0,05) demonstraram que os compósitos FT e ET têm 25,8% e 23,7% de matriz orgânica em peso respectivamente e estabilidade térmica até 200°C. O pico exotérmico do G2 (63,5°C) é maior do que G1 (60,9°C). Os grupos G3 e G4 não apresentaram pico exotérmico e calor liberado. A tg é de aproximadamente 160,5°C para o FT e de 161,4°C para o ET. A resistência à flexão (MPa) e grau de conversão(%) foram respectivamente: G1 (149,1; 60)=G2(152,5; 56,4) e G3 (170,5; 72,6)=G4 (178,2; 71,8) . O compósito ET apresenta maior grau de conversão que FT. À partir da caracterização térmica foi possível observar que o pré-aquecimento em condições não isotérmicas não promoveu maior conversão e resistência à flexão. O tratamento térmico deve ser realizado acima de 160°C. / The aim of this study was to perform the thermal characterization,flexural strength and degree of conversion of two composites, a nanofilled (Filtek Supreme XT: FT) and a microhybrid (Esthet X: ET), shade A2, submitted to different thermal treatments. Methods: The experimental groups were: G1: no treatment; G2: preheated at 68°C with Calset device; G3: post-heated in a MP-130 (EDG) oven, 10 °C/min up to reach 140°C for 20min and G4: pre and post-heated. After curing, thermogravimetric analysis and differential scanning calorimetry (DSC) were carried to determine thermal stability of the composites, glass transition temperature (Tg), exothermic peak and heat releasing after photoactivation. Three-point flexural test was performed after stored in water at 37oC for 24 hours. Degree of conversion was determined using a spectrophotometer FT-Raman. Analysis of variance and Tukey\'s test (P<0.05) showed that FT and ET composites have 25.8% and 23.7% of organic matrix in weight respectively and thermal stability at 200°C. The G2 group release more heat (9.9J/g) than G1 (7.3J/g). Exothermic peak of G2 group (63.5°C) is higher than G1 (60.9°C). G3 and G4 groups did not show exothermic peak and heat releasing. ET composite of G2 group presented the highest exothermic peak (65.2°C) of all groups. The Tg is nearly 160.5°C to FT and 161.4°C to ET. Flexural strength (MPa) and degree of conversion (%) were respectively: G1(149.1; 60) = G2(152.5; 56.4) and G3 (170.5; 72.6) = G4 (178,2; 71,8). ET composite presented higher conversion values than FT. Pre-heating at non-isothermal conditions does not promote higher conversion and flexural strength. Heat treatment after cure can be carried through 160°C.
3

Determinação da capacidade calorífica a pressão constante de ácidos graxos através da calorimetria exploratória diferencial / Determination of heat capacity at room pressure of fatty acids by differential scanning calorimetry

Pinto, Rafaela Rocha, 1985- 06 July 2011 (has links)
Orientador: Maria Alvina Krähenbühl / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-18T13:18:26Z (GMT). No. of bitstreams: 1 Pinto_RafaelaRocha_M.pdf: 1796419 bytes, checksum: 6a9da7357c387302b7688841d36db606 (MD5) Previous issue date: 2011 / Resumo: Nos últimos anos tem aumentado o interesse em combustíveis oriundos de fontes renováveis como é o caso do biodiesel. Tendo em vista que os ácidos graxos são componentes de óleos e gorduras, usados para a produção do biodiesel em reações de transesterificação, e cujas propriedades ainda são bastante escassas na literatura, o objetivo do presente trabalho foi o de contribuir com dados experimentais de capacidade calorífica (cp) de ácidos graxos, constituintes de óleos e gorduras. Tais dados são necessários para os balanços de energia e para o projeto de equipamentos visando a purificação de óleos, bem como para o cálculo de reações químicas. A análise térmica diferencial é uma técnica dinâmica que vem sendo muito utilizada na determinação de dados térmicos, como capacidade calorífica, temperaturas de mudanças de estado, determinação da pureza de substâncias, entre outras. O cp é a medida da quantidade de energia necessária por unidade de massa (ou mol) de uma substância para elevar sua temperatura em um grau. Neste trabalho foram determinados os dados de cp dos seguintes ácidos graxos em fase líquida e pressão ambiente: ácido caprílico (C8:0), ácido cáprico (C10:0), ácido láurico (C12:0), ácido mirístico (C14:0), ácido palmítico (C16:0), ácido esteárico (C18:0), ácido oléico (C18:1) e ácido linoléico (C18:2). Para determinar a capacidade calorífica dos ácidos graxos, foi utilizado o Calorímetro Exploratório Diferencial - DSC da TA Instruments. Os dados experimentais foram processados pelo método do software Thermal Specialty Library versão 2.2 e pelo método da Amplitude. Os resultados mostraram que a capacidade calorífica aumenta com a temperatura e com o tamanho da cadeia carbônica. Entre os métodos avaliados não houve diferença entre os resultados obtidos. Os dados experimentais foram comparados com dados obtidos pelo método de contribuição de grupos e os desvios relativos chegaram a 15 %. O intervalo de temperatura de exploração foi de 308 K (35 ºC) a 573 K (300 ºC) / Abstract: In recent years the interest in renewable sources of fuels such as biodiesel has been increasing. Considering that fatty acids are components of fats and oils, used in the production of biodiesel in the transesterification reactions, and whose properties are still quite scarce in the literature, the purpose of this study was to contribute with experimental data of heat capacity (cp) of fatty acid constituents of oils and fats. Such data are needed for energy balances, for the design of equipment aimed at purification of oils and also for the calculation of chemical reactions. Differential thermal analysis is a dynamic technique that has been widely used in the determination of thermal data such as heat capacity, purity determination, phase change temperatures and others. The cp is the amount of energy required per unit mass (or mole) of a substance to raise its temperature by one degree. The cp were determined, in liquid phase and at atmospheric pressure, of the following fatty acids: caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). To determine the heat capacities of the fatty acids, a Differential Scanning Calorimeter - DSC, of TA Instruments, was used. The experimental data were processed using the Thermal Specialty Library (version 2.2) software and the method of vertical displacement. The results showed that the heat capacity increased with temperature and with the length of the alkyl chains. A comparison of the two methods showed no difference between the resulting information, and when the data from the experiments were compared with the data obtained from the group contribution method, there was a relative deviation of 15%. The working temperature range was from 308 K (35 ºC) to 573 K (300 ºC) / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
4

Contribution à létude de la conservation des graines de grenade (Punica granatum L.) par déshydratation osmotique/Contribution to pomegranate seeds conservation by osmotic dehydration

Bchir, Brahim 31 January 2011 (has links)
Résumé : Lobjectif des travaux entrepris au cours de cette thèse visait à mettre en place un procédé global de conservation des graines de grenade (Punica granatum L.). Ce procédé se base essentiellement sur une déshydratation osmotique (DO), associée à un pré-traitement de congélation et un post-traitement de séchage par entrainement. Dans ce contexte, plusieurs paramètres d'optimisation du transfert de masse ont été étudiés, tels que la nature de la solution dimmersion (saccharose, glucose, glucose/saccharose et jus de datte « sous-produit » enrichi en saccharose), la température (30, 40, et 50°C) et létat du fruit (frais, congelé). En outre, nous avons mis en relation ces conditions avec certaines propriétés des graines : leur texture, leur structure, et leur couleur. Létude des paramètres de déshydratation (perte en eau (WL), gain en solides (SG), et réduction en poids (WR)) a montré quen utilisant des graines congelées et indépendamment de la température et de la solution utilisée, la majorité du transfert de masse seffectue pendant les vingt premières minutes de traitement. A lissue de cette période, la perte en eau est estimée à 46%, 41%, 39%, et 37% respectivement dans les solutions de saccharose, glucose/saccharose, de jus de datte et du glucose. La DO des graines fraîches est caractérisée par une cinétique plus lente, mais une perte finale en eau plus importante. Comme le montrent les analyses en microscopie électronique, cela sexplique par une déstructuration cellulaire survenant à la suite de la congélation des graines, ce qui vient conforter les résultats des observations microscopiques. Les mêmes techniques ont également indiqué une modification de texture/structure induite par le processus de DO. Dautre part, lutilisation dune solution de saccharose (55°Brix) et dune température de 50°C favorise un meilleur transfert de masse. La détermination des différentes fractions deau dans la graine par calorimétrie différentielle (DSC) a montré une augmentation dun facteur ~2,5 fois de la fraction deau non congelable (eau liée) et une réduction de ~3,5 fois de la fraction deau congelable (eau libre) favorisant ainsi une meilleure conservation du fruit. Le suivi de la qualité intrinsèque des graines au cours de la DO a montré une perte dune quantité non négligeable de certains composés (protéines, cendres) de la graine vers la solution, ce qui pourrait avoir une influence majeure sur la qualité organoleptique et nutritionnelle du fruit. La DO seule ne pourrait pas maintenir une stabilité du produit au cours de la conservation. En effet, lactivité deau du produit fini après DO est proche de 0,90. Ainsi, dans un but plus appliqué, un traitement complémentaire de séchage par entrainement (2 m/s durant 4 heures) a été mis en place, à différentes températures (40, 50, et 60°C), afin de réduire lactivité deau à une valeur inférieure à 0,65. Afin doptimiser le traitement de séchage, nous avons étudié en premier lieu leffet de la température sur lévolution de la matière sèche, de lactivité deau et du pourcentage de séchage des graines. Dautre part, plusieurs paramètres de qualité des graines de grenade (lactivité antioxydante, la teneur en composés phénoliques, les anthocyanines, la couleur, et la texture) ont été étudiés à différentes températures. Ce travail est une contribution à létude des propriétés physico-chimiques des graines de grenade (Punica granatum L.) au cours des procédés de congélation, de déshydratation et de séchage. Les caractéristiques du produit fini peuvent justifier de nouvelles voies de transformation et dexploitation des graines de grenade. Abstract: The aim of this work was to create a complete conservation process of pomegranate seeds (Punica granatum L.). This process is essentially based on osmotic dehydration (OD), which was associated to freezing and air-drying process. Several parameters were studied to optimize the process such as osmotic solution (sucrose, glucose, and sucrose/glucose and date juice with sucrose added), temperature (30, 40, and 50°C) and state of the fruit (fresh and frozen). All these conditions were linked to seed proprieties (texture, structure, and colour). The study of osmotic dehydration parameters (water loss (WL), solids gain (SG) and weight reduction (WR)) showed that most significant changes of mass transfer took place during the first 20 min of dewatering using frozen seeds, independently of temperature and sugar type. During this period, seeds water loss was estimated at 46% in sucrose, 41% in sucrose/glucose mix, 39% in date juice, and 37% in glucose. Mass transfer was slower starting from fresh fruit but led to a higher rate of WL at the end of the process. This fact can be explained by scanning electron microscopy, which showed damage of seed cell structure after freezing. This has practical consequences in terms of the modification of seeds texture. The same process also revealed a modification of seed texture and cell structure after osmotic dehydration. Using a sucrose solution and a temperature of 50°C favoured the best mass transfer. The determination of different water fractions of seed by differential scanning calorimetry (DSC) showed that the % of frozen water decreased 3.5 times contrary the % of unfreezable water that increased 2.5 times. This favours a better seeds conservation. During osmotic dehydration, there was a non negligible leaching of natural solutes from seeds into the solution, which might have an important impact on the sensorial and nutritional value of seeds. Using only osmotic dehydration could not maintain the stability of seeds during conservation. In fact, after the osmotic process, water activity of seeds was found to be higher than 0.9, allowing to the development of microorganisms and some undesirable reactions. As a consequence, a drying of the pomegranate seeds (during four hours) was investigated at three different temperatures (40, 50, and 60 °C) with air flow rate of 2 ms-1. Prior to the drying process, seeds were osmodehydrated in a sucrose solution (55°Brix) during 20 min at 50°C. The drying kinetics and the effects of OD and air-drying temperature on antioxidant capacity, total phenolic, colour, and texture were determined. This work is a contribution to the study of physico-chemical properties of pomegranate seeds (Punica granatum L.) during freezing, osmotic dehydration and drying. After the global process, the pomegranate seed characteristics lead to new industrial developments.

Page generated in 0.0581 seconds