• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of High Mobility Group A2 (HMGA2) in Prostate Cancer

Hawsawi, Ohuod 20 May 2019 (has links)
High mobility group A2 (HMGA2) is a non-histone protein highly expressed during the development but is low or absent in most adult tissues. Epithelial-mesenchymal transition (EMT) plays a critical role in prostate cancer progression and metastasis. HMGA2 has been shown to promote EMT in separate studies. Interestingly, wild-type HMGA2 and truncated (lacking the 3’UTR) HMGA2 isoforms are overexpressed in many cancers. However, there are no studies on the role of each isoform in prostate cancer progression. We hypothesized that wild-type and truncated HMGA2 promotes prostate cancer progression by different mechanisms. We analyzed the expression of HMGA2 in the prostate panel by western blot analysis and the localization in prostate tissue microarray by immunohistochemistry. We stably overexpressed wild-type and truncated HMGA2 cDNA in LNCaP cells and measured the expression and the localization of HMGA2 as well as EMT markers. We also performed the migration and cell viability assays. We analyzed phospho-ERK in cells overexpressing HMGA2 as well as inhibition with U0126 (MAPK inhibitor). To explore the role of truncated HMGA2, we measured the reactive oxygen species (ROS) concentration by DCFDA dye, as well as analyzing Jun-D as a putative downstream effector of HMGA2. Additionally, we knocked down Jun-D and performed the migration and cell viability assays. We treated ARCaP-M mesenchymal cells with camalexin, a 3-thizol-2-yl-indole (a natural product, as a candidate to target HMGA2) in vitro and in vivo in nude mice. Our results showed an increase in nuclear HMGA2 expression with prostate cancer progression as compared to normal tissue. LNCaP cells overexpressing wild-type but not truncated HMGA2 displayed nuclear localization and induced EMT via the ERK1/2 pathway, and this effect could be reversed by treating the cells with U0126. Conversely, truncated HMGA2 displayed cytoplasmic expression and increased prostate cancer migration via increasing Jun-D expression and ROS; this could be antagonized by Jun-D knockdown. Finally, treating ARCaP-M aggressive prostate cancer cells with camalexin reduce its expression in vitro and in vivo. In conclusion, both wild-type and truncated HMGA2 induce prostate cancer progression by different mechanisms which may be targeted by camalexin.
2

Non-targeted metabolite profiling of leaf intercellular washing fluids reveals a novel role for dihydrocamalexic acid in the Arabidopsis age-related resistance response against Pseudomonas syringae

Kempthorne, Christine J 04 1900 (has links)
Many economically important crop systems exhibit an Age-Related Resistance (ARR) response whereby mature plants become resistant to pathogens they were susceptible to when younger. The signaling pathways and mechanisms of ARR have not been well studied. Arabidopsis displays ARR in response to P. syringae pv tomato (Pst). Several studies provide evidence that intercellular salicylic acid (SA) accumulation is required for ARR and SA acts as a direct antimicrobial agent to limit bacterial growth and biofilm-like aggregate formation. SA accumulation mutants are ARR defective; however, a modest level of resistance is occasionally observed leading to the hypothesis that other compounds contribute to ARR as antimicrobial agents. Previous studies demonstrated that CYP71A13 (a key enzyme in indolic biosynthesis) is expressed during the ARR response. I demonstrated that CYP71A12 functionally compensated for CYP71A13 during ARR, as cyp71a12/cyp71a13-1 mutants were consistently ARR-defective compared to their respective single mutants. I demonstrated that dihydrocamalexic acid (DHCA) accumulated in intercellular washing fluids (IWFs) collected from plants during the ARR response using high resolution mass spectrometry-based profiling. DHCA was detected in IWFs collected from wild-type ARR-competent plants and, was absent in IWFs from ARR-incompetent cyp71a12/cyp71a13 mutants. In vitro DHCA antimicrobial activity against P. syringae was not observed, but exogenous infiltration of DHCA into the leaf intercellular space restored ARR in cyp71a12/cyp71a13 mutants Unlike SA which exhibits direct antimicrobial activity against P. syringae, DHCA does not and instead may affect pathogen virulence in other ways. My research provides evidence that intercellular DHCA contributes to ARR in response to P. syringae in Arabidopsis. Understanding the genes and metabolites contributing to ARR will provide useful information for future crop breeding and genetic modification that will mitigate agricultural losses due to disease. / Thesis / Master of Science (MSc) / During Age-Related Resistance (ARR), mature plants including some crop plants become resistant to pathogens they were susceptible to when younger. How ARR works is poorly understood. My objective was to identify potential antimicrobial metabolites contributing to ARR in Arabidopsis against the bacterial pathogen Pseudomonas syringae. Genetic analyses combined with mass-spectrometry based metabolite profiling demonstrates that two cytochromes P450, CYP71A12 and CYP71A13 contribute to ARR. My research provides evidence that DHCA accumulates in the leaf intercellular space in ARR-competent plants, where it may act to inhibit the bacterial infection process. DHCA has low antimicrobial activity against P. syringae suggesting its mechanism of action is not directly antimicrobial. Importantly, application of DHCA to the leaf intercellular space of cyp71a12/cyp71a13 restored ARR, confirming that DHCA contributes to ARR in Arabidopsis. Understanding ARR will provide useful information for future crop breeding and genetic modification that will mitigate agricultural losses due to disease.
3

Transkriptomanalyse der <i>Arabidopsis</i>-Wurzel nach Infektion mit dem pilzlichen Pathogen <i>Verticillium longisporum</i> und Identifizierung von transkriptionellen Regulatoren der Pathogenantwort / Transcriptome analysis of <i>Arabidopsis</i> roots after infection with the fungal pathogen <i>Verticillium longisporum</i> and identification of transcriptional regulators of the pathogen response

Iven, Tim Eberhard 30 April 2009 (has links)
No description available.

Page generated in 0.0357 seconds