• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved Design Method for Cambered Stepped Hulls with High Deadrise

Bay, Raymond James 18 June 2019 (has links)
Eugene Clement created a design method for swept-back cambered step hulls with deadrise. The cambered step is designed to carry 90% of the planing vessels weight with the remaining 10% being support by a stern mounted hydrofoil. The method requires multiple design iterations in order to achieve an optimal design. Clement stated that the method was not suitable for cambered planing surfaces with high deadrise angles greater than 15 degrees. The goal of this thesis is to create a design procedure for swept-back cambered planing surfaces with high deadrise angles that does not require multiple iterations to obtain an optimal design. Computational fluid dynamics (CFD) program STAR CCM+ is used to generate a database for performance characteristics for a wide range of designs varying deadrise angle, load requirements, trim angle, and different camber values. The simulations are first validated with experimental data for two different cambered steps designed by Stefano Brizzolara and tested in the tow tank at the United States Naval Academy. A series of validation studies utilizing fixed and overset meshes led to a final simulation set up with an overset mesh that allowed for accurate prediction of drag, trim moment, wetted keel length, and the wake profile aft of the cambered planing surface. The database is fitted such that the final equations for optimal design values such as camber, trim angle, drag (shear and pressure), wetted keel length, wetted surface area, and trim moment are in terms of deadrise angle and lift. The optimized design equations are validated with CFD simulation. / Master of Science / Eugene Clement developed a new design method to improve the performance of ultra-fast planing crafts. A planing craft uses the force generated from the flow of water over the bottom to lift the vessel without the use of the static buoyancy force that classic boat designs rely on. Clement wanted to improve the performance of the planing vessel by reducing the total drag force caused by the flow of water on the bottom of the vessel. Clement's design method involves reducing the wetted surface area which reduces drag. Reducing the wetted surface area would normally cause the lifting force on the vessel to reduce, but with the addition of curvature in the smaller wetted surface area, the lifting force would remain the same. Clement's new design method requires multiple iterations to obtain an optimal design. The method limits the angle of the vessels bottom relative to horizontal to under 15 degree. The goal of this thesis is to create a new design method for planing vessels with bottoms that have an incline of 15 degrees or more relative to horizontal. The design method is created using Computational Fluid Dynamics (CFD) solver to model the planing surface moving through water. The CFD solver is validated with experimental test performed at the United States Naval Academy. The improved design method uses equations that can predict the forces and other design characteristics based on the desired vessel weight and seakeeping requirements.
2

Design, Simulation, and Wind Tunnel Verication of a Morphing Airfoil

Gustafson, Eric Andrew 02 September 2011 (has links)
The application of smart materials to control the flight dynamics of a Micro Air Vehicle (MAV) has numerous benefits over traditional servomechanisms. Under study is wing morphing achieved through the use of piezoelectric Macro Fiber Composites (MFCs). These devices exhibit low power draw but excellent bandwidth characteristics. This thesis provides a background in the 2D analytical and computer modeling tools and methods needed to design and characterize an MFC-actuated airfoil. A composite airfoil is designed with embedded MFCs in a bimorph configuration. The deflection capabilities under actuation are predicted with the commercial finite element package NX Nastran. Placement of the piezoelectric actuator is studied for optimal effectiveness. A thermal analogy is used to represent piezoelectric strain. Lift and drag coefficients in low Reynolds number flow are explored with XFOIL. Predictions are made on static aeroelastic effects. The thin, cambered Generic Micro Aerial Vehicle (GenMAV) airfoil is fabricated with a bimorph actuator. Experimental data are taken with and without aerodynamic loading to validate the computer model. This is accomplished with in-house 2D wind tunnel testing. / Master of Science
3

Aerodynamic Optimization of a 2D Airfoil for Rotary-Wing Aircraft at Mars Atmospheric Conditions

Saez, Aleandro G. 12 1900 (has links)
The interest toward Mars exploration has been considerably increasing due to also the successful deployment of the Perseverance rover and the continuous tests developed by SpaceX's launch vehicle, Starship. While the Mars 2020 mission is currently in progress, the first controlled flight on another planet have been proven in April 2021 with the vertical take-off and landing of the Ingenuity rotorcraft on Mars. In addition, the rotorcraft Dragonfly is expected to achieve the same endeavor in Titan, the largest moon of Saturn, by 2036. Continuous efforts have been oriented toward the development of new technologies and aircraft configurations to improve the performance of current proposed designs to achieve powered flight in different planetary bodies. This thesis work is a preliminary study to develop a comprehensive analysis over the generation of optimum airfoil geometries to achieve vertical flight in environments where low Reynolds numbers and Mach number equal to 0.2 and 0.5.
4

Výstavní galerie v Olomouci / The Exhibition Gallery in Olomouc

Morcinková, Eliška January 2016 (has links)
The aim of this diploma thesis is the design of bearing construction of the Exhibition gallery in Olomouc. The building is of irregular shape with the biggest span of 50 m. The bearing structure in the highest point goes up to 14,6 m. The main design material is the glue-laminated timber GL24h and GL32h. The optimization of chosen parts of the structure has been made and the best option was then used in the detailed structural calculation. The bearing structure consists of circular columns to which the floor beams and roof trusses are connected. The irregular structure of the gallery comprises of three different roof types – flat trafficable roof, double-pitched glass roof formed by pitched cambered trusses and single-pitch roof spanning over the central part of a 20,7 m span. Within the thesis the design and check of the main structure members and connections has been made. The entire structure is pinned and its stiffness is secured by the system of tension rods and rigid floor and roof construction respectively.

Page generated in 0.029 seconds